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Under specific circumstances, the plasma evolution in fusion devices can show unstable evo-

lution modes. The growth time of these instabilities can be as fast as microseconds, making any

active magnetic control action practically impossible. Conversely, in presence of a sufficiently

close conducting wall, the plasma perturbation will induce eddy currents, counteracting the in-

stability itself. This stabilizing effect lasts until the eddy currents decay; this intuitively explains

why the growth rate can be slowed down to electromagnetic times, which are of the order of

milliseconds or slower, so that an active stabilization is indeed possible. Such modes are hence

called Resistive Wall Modes (RWMs).

It is usual practice to label the various possible instabilities in terms of the so-called toroidal

mode number n (the Fourier harmonic index in the toroidal direction), such that the spatial

dependence upon the toroidal angle ϕ of all plasma quantities is as e jnϕ .In Reversed Field

Pinches many unstable modes with different n’s routinely arise simultaneously. This is less

common in tokamak devices, where the high toroidal field prevents many high-n modes to

show up. In this paper, we will deal with the simultaneous evolution in ITER of two different

instabilities: n = 0 (the so-called axisymmetric VDE, Vertical Displacement Event) and n = 1

(kink instability). We propose a feedback control architecture able to deal with this situation,

and we design a controller consisting of two separate loops, so as to minimize the control effort

and the interactions.

The system is modelled resorting to the CarMa code [1], a cutting-edge numerical model for

the analysis of RWMs in presence of volumetric three-dimensional structures. Giving a finite

elements discretization of the conducting domain, the basic equation is:

L∗
dI
dt

+R I +
dU
dt

= F V (1)

where I is the vector of discrete currents induced in 3D structures, V is the vector of voltages

fed to active conductors, L∗ is a modified inductance matrix and R is a resistance matrix. The

above model is able to rigorously take into account multiple toroidal mode numbers [1], by

considering different plasma response matrices corresponding to different n numbers, computed

with the CREATE-L code [2] for n = 0 and with the MARS-F code [3] for n = 1.

The ITER tokamak has been discretized with a 3D finite elements mesh, made of 4970 hexa-
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hedral elements, giving rise to N = 4135 discrete degrees of freedom. The plasma configuration

considered is a Scenario 4, 9 MA configuration, with a normalized βN = 2.94.

With a simple rearrangement of (1), we get the state-space model

ẋ = Ax+Bu , ym = Cmx (2)

where the dynamic matrix A is given by A = −(L∗)−1R, the state vector x coincides with the

set of 3D currents I, the input quantities u are the voltages fed to the active coils. The outputs

ym are the magnetic field perturbations at given spatial points around the torus. These points are

grouped in three equally-spaced poloidal sections, at ϕ1 = 0o, ϕ2 = 120o and ϕ3 = 240o; the set

of measurements in each of the three sections are indicated as ymi , with i ∈ {1,2,3}. We also

consider the current iV S3 in the VS3 circuit and the 27 currents iELM in the ELM coils, grouped

in 3 vectors of length 9 iELM1 , iELM2 and iELM3 relative to the current in the ELM circuits in three

regions of the vessel (upper, center and lower). The average value of iELMi along the toroidal

angle will be denoted by iELM0,i .

The dynamic matrix A has three unstable eigenvalues. The first (around 5.6s−1) corresponds

to the n = 0 RWM (VDE). The other two have practically coinciding values (around 17s−1) and

correspond to two n = 1 current density patterns (external kink), which are identical apart from

a shift of π/2 in the toroidal direction.

The main requirement of the controller is the stabilization of the n = 0 and n = 1 modes. The

aim is to enlarge the operating envelope, in terms of maximum disturbance (initial condition

along the unstable modes) that can be rejected. The limitations are the maximum available

voltages and currents.

The controller design is conceptually divided in two parts, one for each n value. We denote

with ui, i ∈ {1,2,3} the voltages applied to the non-axisymmetric coils in the upper, center, and

lower region of the vessel, respectively. These voltages have been decomposed as:

ui = Θ ·


uAi

uBi


+ui0 , i = 1,2,3 ,Θ =




cosη1 sinη1

· · · · · ·
cosη9 sinη9


 . (3)

The uAi and uBi components are used by the n = 1 mode stabilization controller, whereas the

ui0 terms are used by the n = 0 mode stabilization controller in the attempt of minimizing the

amplitude of the iELM0,i currents. The reason for the decomposition of the inputs as in (3) is

that the uAi and uBi terms counteract the n = 1 perturbation without stimulating the n = 0 mode.

Analogously to the inputs in (3), the estimated vertical position zi in the generic poloidal section
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i, with i∈ 1,2,3 has been approximated as zi = z0 +zA cosϕi +zB sinϕi , where z0 is the average

vertical position along the toroidal angle, calculated as z0 = z1+z2+z3
3 .

In each section zi is given by a suitable combination of magnetic measurements. Hence, zA

and zB are given by (M† indicates the Moore-Penrose pseudoinverse of the matrix M.)


zA

zB


 = M†




z1− z0

z2− z0

z3− z0


 , M =




cosϕ1 sinϕ1

cosϕ2 sinϕ2

cosϕ3 sinϕ3


 (4)

The controller design is split in the design of two separate stabilizing controllers, for the n = 0

and n = 1 modes respectively. The n = 0 controller has been designed as

u0 = k1ż0 + k2iV S3 , ui0 = k3iELM0,i , i = 1,2,3 (5)

where the gains k1, and k2 in (5) have been chosen using an approach similar to the one de-

scribed in [4]. The gain k3 has been choseen via a trial and error approach in order to reduce

the axysimmetric currents flowing in the ELM coils. Indeed, when only a n = 0 perturbation is

present, this current is caused by the inductive coupling between the plasma, the other conduct-

ing structures, and the ELM coils.

The n = 1 controller has been designed as a state feedback controller, where the control

matrix has been chosen in order to take into account the saturation of the ELM coil voltages. The

needed state observer has been designed as a Kalman filter with diagonal covariance matrices

whose non zero elements are tuned on the base of a trial and error procedure.

The first simulation refers to a VDE event consisting of a 10 cm displacement along the

unstable n = 0 mode. Using ui0 = 0, i = 1,2,3, i.e. without the decoupling action, the n = 0

controller gives rise to high currents in the ELM coils (Fig. 1) as compared to the case of

decoupling action present (Fig. 2).

The second case (Fig. 3) refers to a disturbance along the n = 1 mode corresponding to a 1 cm

displacement at the toroidal angle ϕ1. Evidently, the decomposition of the inputs to the plant

and of the outputs produces very little influence of the n = 1 loop on the n = 0 mode.
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Figure 1: Closed-loop response to a 10 cm VDE (no decoupling).

Figure 2: Closed-loop response to a 10 cm VDE.

Figure 3: Closed-loop response to a 1 cm displacement along the n = 1 mode.
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