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 Introduction 

A code, SELFO-light, for self-consistent modelling of the power deposition and ion 

distribution functions for ICRH (Ion Cyclotron Resonance Heating) has been developed for 

tokamaks. The code package combines the full wave solver LION [1, 2], which uses a FEM 

(Finite Element Method) discretization in both the radial and the poloidal directions in 

toroidal geometry, with a 1D time dependent FEM Fokker-Planck solver for calculating pitch 

angle averaged distribution functions of resonant species. The spatial dispersion of waves in 

the ICRF (Ion Cyclotron Range of Frequency) complicates the calculations of the wave field, 

since the plasma response depends on the direction of propagation. The conventional way to 

solve this problem is to Fourier decompose the wave field. Novel methods suitable for FEM 

are presented for including higher order Larmor radius effects, upshift of the parallel wave 

number and transit time magnetic pumping. The Fokker-Planck code includes sources and 

sinks to allow modelling of NBI and fusion products [3]. A benchmarked formula for ICRF 

heating is used to calculate the parallel ion temperatures. Self-consistency is obtained by 

modifying, at every time step, the susceptibility tensors of the resonant ion species used in the 

wave code to be consistent with the changes in the pitch angle and flux surface averaged 

distribution functions and changes in their parallel temperatures [4]. The flux surface 

averaged quasi-linear operators used in the Fokker-Planck code are calculated from the wave 

fields. Fast wave current drive is calculated from the local power deposition on electrons 

using a bench-marked formula including trapped electrons [5]. 

 

SELFO-light 

In the standard version of SELFO-light the equilibrium is calculated with the CHEASE 

code [6] and the wave field with the LION code [1, 2]. To make the wave fields consistent 

with the non-thermal distribution functions the susceptibility tensors corresponding to bi-

Maxwellian distribution functions of the different resonant ion species are modified by using 
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amplification factors. The quasi-linear RF-operators used in the Fokker-Planck code are 

calculated by averaging the wave field and quantities obtained from the wave solver over 

subvolumes delimited by magnetic flux surfaces in which density, temperature and power are 

assumed to be constant. Changes in the density profiles determined by transport solvers or 

measurements are achieved by using thermal sources and sinks in the Fokker-Planck solver. 

Four time scales, τ4> τ3> τ2> τ1, are used in order to get the coupled power for each 

toroidal mode to agree with the absorbed power. On τ4 the equilibrium quantities, RF-power, 

mode spectra, NBI power and injection energy may change. On τ3 new wave field 

calculations are done including modifications of the susceptibility tensors of the resonant 

species and their parallel temperatures. The Fokker-Planck solver is called on the time scale 

τ2, after each call the electric wave fields are normalized so that the absorbed power agrees 

with the coupled power. The time scale τ1 is determined by the convergence of the Fokker-

Planck solver. 

The wave field is calculated with the LION code solving the equation 
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where E⊥ = (En, Eb), En and Eb are the electric field components normal and tangential to the 

magnetic flux surfaces, respectively, Jant is the antenna current and ε is the dielectric tensor. 

The dielectric tensor is defined from local unform bi-Maxwellian susceptibility tensors to all 

orders in the ratio between the ion Larmor radius and the perpendicular wavelength by 

inclusion of the Bessel functions. Since the LION code does not calculate the parallel electric 

field, the electron damping due to TTMP/ELD is approximated by half of the TTMP damping 

[7]. The current driven is calculated from the electron absorption using a formula [8] taking 

into account trapped electrons. 

The effects of a non-thermal distribution function, fn(v), due to ion cyclotron absorption are 

included by calculating a local equivalent parallel temperature and amplification factors for 

the susceptibility tensor elements from the 1D time-dependent distribution functions [4].  The 

amplification factors ( , )n l
ika  and the equivalent parallel temperatures are for each resonant 

species, n, calculated in each subvolume for each harmonic, l, in order to take into account the 

presence of a flux surface intersecting more than one harmonic: ( )
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,  fM,n(v) is the corresponding Maxwellian distribution 

function 2( , )
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bb l ld J J− +≈ −  and ( )( , ) 2 2
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The predominant effect of spatial dispersion comes from the parallel wave number, which 

is approximated by k|| = nφ/R. Other important spatial dispersive effects are higher order FLR 

terms and TTMP damping. Methods to correct these have been developed suitable for FEM 

codes. The spatial dispersive effects caused by FLR depend in leading order only on k⊥, the 

higher order terms are important for describing how the E+ and E- absorption adds up and 

depend on the direction of k⊥, which can be taking into account by locally rotating the 

susceptibility tensor with an angle θ  resulting in 
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where T = (χxx + χyy)/2, σ = (χxx - χyy)/2, χxx , χyx and χyy are calculated in a coordinate 

system where ky = 0. The angle θ is given by ( ) / 2θ α α− += −  where α+ and α−  are defined 

by eiα+|E+| = 0.5 (En + i Eb) and eiα− |E-| = 0.5 (En - i Eb), the wave field components En and Eb 

are obtained from the previous iteration. 

The TTMP damping is first calculated assuming the plasma to be local uniform with k⊥ 

normal to the magnetic flux surfaces. The electron damping is then corrected by multiplying 

the bb-component of the electron susceptibility tensor with ( )
2 2

||
/ bk E⊥ ⊥∇×E where 

( )||⊥∇×E  is calculated from the solution.  

The upshift, applicable to solutions with strong single pass damping, is calculated 

consistent with the stationary phase method. The change in energy ∆W due to wave-particle 

interactions is obtained by integrating the change in energy of the particle along the drift orbit 

( ) ( ){ }
0

exp ln Re ln '
B t

gt
W Ze dt E t E dt i

τ

ϑ
−

⊥ + − +
 ∆ = + ⋅∇ + ∫ ∫ vv ,   (3) 

where vg is the guiding centre velocity and the phase ϑ is given by 

( )Im ln '
t

g cit
E n dtϑ ω ω

−
+ = ⋅∇ + − ∫ v . For decorrelated interactions the resonances 

correspond to points where ϑ becomes stationary. An equivalent local k|| can then be defined 

so that the resonance condition is given by the stationary phase point, neglecting the drift and 

the variation of v|| at the resonance one obtains 
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The wave field is then calculated by means of iteration replacing k|| = nφ/R in the susceptibility 

tensor with Eq. (4). 

Flux surface averaged distribution functions are calculated for each subvolume and 

resonant ion species with a time dependent 1D cubic FEM Fokker-Planck code [3] 
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where ( ) 2( , )
, 1 1
n l

n ik n nH k E J E Jω⊥ + − − += +civ  is the diffusion coefficient in the quasi-linear 

operator, Fn(v) = 4πv2fn(v), where  fn(v) is the local distribution function of the n:th species, α 

and β are Chandrasekhar´s Coulomb collision operators. The argument of the Bessel functions 

is ( , )
, /n l
ik cik ω⊥ v , where the perpendicular wave number, ( , )

,
n l
ikk⊥ , and wave field components, E± , 

are averaged with respect to power over each subvolume for each species and each harmonic. 

The source, Sn, and loss, D, are used for modelling NBI, fusion reaction products and changes 

of the resonant ion densities. 
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