The role of energetic electrons on non-inductive current start-up and formation of an inboard poloidal field null configuration in the spherical tokamak QUEST

S. TASHIMA¹, H. ZUSHI², M. ISOBE³, H. IDEI², S. OKAMURA³, K. HANADA², K. NAKAMURA², A. FUJISAWA², K. MATSUOKA³, M. HASEGAWA², Y. NAGASHIMA², M. ISHIGURO¹, S. KAWASAKI², H. NAKASHIMA², A. HIGASHIJIMA²

¹IGSES, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
²RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
³National Institute for Fusion Science, 509-5292, Toki, Japan

1. INTRODUCTION

Non-inductive current start up and sustainment using electron cyclotron resonance heating (ECH), aiming at steady state operation of the fusion tokamak, has been studied on the several devices [1 - 5]. In the current start-up phase, three mechanisms for initial current I_{p}^{initial} have been proposed as follows; the pressure-driven current j_{pd} [6], co-moving electrons characterized by stagnation orbits j_{co}[7,8], and toroidal precession of trapped electrons j_{pr}. Since the direction of these currents depends on the sign of the vertical field B_z, the effect of curvature and the magnitude of B_z or mirror ratio R_{mirror} of the toroidal field B_t on I_{p}^{initial} is studied to verify the dominant mechanism or evaluate the fraction of mechanisms. Here, R_{mirror} is defined as the ratio of B_t at the wall and B_t at the mid plane along the field lines. In the steady state phase, the fraction of B_z/B_t on I_p and equilibrium is also investigated. High beta poloidal β_p equilibrium with an inboard null is found at high B_z/B_t and high R_{mirror}. The role of the energetic electrons created by ECH on I_{p}^{initial}, and formation and sustainment of high poloidal beta β_p plasma is studied with measurement of hard X-rays (HXR).

2. EXPERIMENTAL SETUP

QUEST is a medium sized device, whose inner and outer diameters are 0.2 m and 1.4 m, respectively. Two flat divertor plates are set at $Z = \pm 1$ m from the mid-plane. The major (R_0) and minor ($<a>$) radii of the plasma are 0.7 – 0.85 m and 0.2 – 0.4 m, respectively. RF waves at the frequency of 8.2 GHz are used to initiate plasma. B_t is 0.29 T and the fundamental resonance locates at $R_{\text{res1}} = 0.3$ m. The typical plasma density n_e is below the cut-off density n_{cut} ($\sim 8.6 \times 10^{17}$ m$^{-3}$). Since the chamber aspect ratio is 1.33 and 1st -3rd harmonics co-exist, electrons can interact with ECWs at various parallel refractive indices $N_{||}$. Up to 50 kW of rf power is injected in the O-mode at $N_{||0} < 0.4$. The R_{mirror} is varied from 0.85 to 2 by choosing
three pairs of poloidal field coils. For $R_{\text{mirror}} < 1$, the magnetic field lines are convex indicating the negative curvature. The ratio of B_z/B_t is varied up to 10% at $2 \times R_{\text{res1}}$. The semiconductor detector CdTe, whose size is $3 \times 3 \times 1 \text{ mm}^3$, is used to detect bremsstrahlung emitted by energetic electrons in the energy range $< 1 \text{MeV}$. Pulse height analysis is used to obtain the energy spectrum with a time resolution of a few msec. The observation lines view plasma tangentially on the mid plane with the radial resolution of $\pm 0.1 \text{ m}$ at R_{tan} of 0.5 m.

3. EXPERIMENTAL RESULTS

(a) current start-up

In order to investigate how energetic electrons confined in the open configuration contribute to $I_{\text{p\ initial}}$, three kinds of open configuration, whose R_{mirror} and the decay index $n^* (= -d\ln B_z/d\ln R)$ are respectively, 0.85 and -0.02 at R=0.6 m for the case (a), 1.2 and 0.2 for the case (b), and 2 and 0.5 for the case (c), are chosen. P_{RF} is 17 kW and the line density $n_e l$ is $< 1 \times 10^{17} \text{ m}^{-2}$. The magnetic reconstruction using flux loop signals indicates that a closed magnetic surface is not formed for $I_{\text{p\ initial}}$ below 4 kA. Figure 1 shows the B_z dependence of $I_{\text{p\ initial}}$ and HXR flux (Γ_{HX}) in the energy range of 10 – 60 keV. In the case (a), no current is observed for $B_z < 0.8 \text{ mT}$, $I_{\text{p\ initial}}$ peaks at $\sim 1 \text{ kA}$ at $B_z \sim 1 - 1.2 \text{ mT}$ and decreases to zero for $B_z > 1 \text{ mT}$. The peak of Γ_{HX} ($\sim 50 \text{ counts/sec}$) also corresponds to the peak of $I_{\text{p\ initial}}$, but no high energy ($> 30 \text{ keV}$) HXR are observed (see Fig 1c). In the case (b), it is observed that I_p increases linearly up to 3.7 kA as B_z increases to 1.4 mT, and remains at $1 \text{kA} \pm 0.2 \text{ kA}$ for $1.6 \text{ mT} < B_z < 2.8 \text{ mT}$. At $B_z = 1.4 \text{ mT}$ Γ_{HX} shows the maximum, and at $B_z = 1.6 \text{ mT}$ it is reduced and it is increased gradually again with increasing B_z. At the $B_z > 1.6 \text{ mT}$, the high energy component of HXR ($> 30 \text{ keV}$) is increased. In the case (c) $I_{\text{p\ initial}}$ also
increases up to 3 kA with a proportional constant which is a factor of three smaller than that in the case (b). No reduction in I_p^{initial} is observed. Although I_p^{initial} is < 3 kA, Γ_{HX} is increased up to 3×10^4 c/s at $B_z = 3$ mT, which is one order of magnitude higher than that in the case (b). The energy spectrum shows that energetic electrons build up towards the higher energy range.

(b) inboard poloidal field null configuration

Since the case (c) shows a favorable current start-up, current sustainment experiments have been performed under the condition of temporally constant B_z/B_t up to 10%. P_{RF} is 45 kW and n_L is $\sim 2 \times 10^{17}$ m$^{-2}$ ($n_e < n_{\text{cut}}$). Figure 2 shows the B_z dependence of I_p, $\Gamma_{\text{HX}} (>50$ keV) and T_{HX}. Here, T_{HX} is determined from the slope of the energy spectrum. These three quantities increase with increasing B_z and are well kept constant in time. At $B_z = 15$ mT I_p reaches up to 16 kA and the maximum energy extends to ~ 0.8 MeV. If the number density of energetic electrons n_{shot} is assumed 0.1 n_e [9], $\beta_{\text{PHX}} = n_{\text{shot}} T_{\text{HX}}/(B_p^2/2\mu_0)$ can be evaluated, where B_p is the poloidal magnetic field. β_{PHX} is ~ 3.8 and almost independent of B_z. Figure 3 shows the reconstructed magnetic flux with the inboard poloidal field null due to high β_p. These results indicate that in the case (c) electrons created by ECH can be well confined and accelerated with increasing B_z, and then as a result they contribute to formation and sustainment of the high β_p equilibrium.
4. Discussion and summary

The initial energy of electrons born near the cyclotron layer is evaluated at several keV [10], which can be supported by the fact that at the very beginning phase of the ECR, HXR ~ 10 keV has been measured [11]. Since they are collisionless, a physical picture based on particle orbits is possible. In the case (a), since the curvature of the field lines is convex, co-moving electrons with stagnation orbits and mirror trapped particles with banana orbits cannot be confined. Thus the pressure-driven current might be a plausible mechanism. In cases (b) and (c) the contribution of \(j_{co} \) and \(j_{pr} \) to \(I_p^{initial} \) might be discriminated by orbit calculations taking the magnitude of \(B_z \) into account. The orbits of electron, having energy from 10 -30 keV, launched at \(R=0.6\text{m} \) and \(Z=0\text{ m} \) show that when \(B_z \) is 1.2 mT co-moving electrons at 10 keV can be confined for the pitch angle\((\theta)\) of > 60° and at 30 keV for \(\theta > 0° \). Thus it is concluded that \(j_{co} \) contributes to \(I_p^{initial} \). However, when \(B_z \) is 3 mT, they can be confined only for \(\theta \sim 85° \). This strong \(B_z \) dependence of stagnation orbits is ascribed to that the energy is proportional to \(B_z^2 \). On the other hand, the trapped particles for \(\theta > 65° \) can be well confined. The width \(\Delta \theta \) of the trapped particles increases to 45° with for \(R_{\text{mirror}} = 2 \). Therefore, it can be concluded that the trapped electrons dominate \(I_p^{initial} \) at high \(B_z \) and large \(R_{\text{mirror}} \).

In the case of \(R_{\text{mirror}} = 2 \), the inboard null configuration is found to be sustained in steady state. From the equilibrium relation \(B_z = \mu_0 I_p/4\pi R(\ln(8R/a) + li/2 - 3/2 + \beta_p) \) [12], \(\beta_p \) is evaluated as 3.87, which is consistent with \(\beta_{PHX} \). Here, \(I_p = 11 \text{ kA} \), \(B_z = 10 \text{ mT} \), \(a = 0.15 \), \(R = 0.73 \) and \(li = 1.2 \) are used. As shown in Fig. 2, since both \(\Gamma_{HX} \) and \(T_{HX} \) relate with \(B_z \) linearly, the hot pressure \(n_{\text{hot}} T_{HX} \) is proportional to \(B_z^2 \). Thus, non-inductive current driven by EC waves leads to the high \(\beta_p \) equilibrium due to the better confinement of the energetic trapped particles.

References