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For realizing magnetic confinement fusion, it is necessary to suppress ideal magnetohydrody-

namics (MHD) instabilities. Fortunately, linear ideal MHD theory has been well-established[1],

and many numerical codes have been developed to identify linear ideal MHD stability with

realistic plasma parameters under static conditions[2, 3, 4].

In the ideal case without plasma rotation, the theoretical background for non-polluted calcula-

tions was established[5]. Recently, however, based on the physics understanding achieved with

theoretical and experimental analyses, rotation effects and non-ideal effects (e.g. effect from

energetic particles, FLR effects) deemed to be important to accurately identify the stable oper-

ation regime. Since these rotation and/or non-ideal effects change the mathematical/numerical

property of the problem to be solved from Hermitian to non-Hermitian, we have to treat the

problem carefully from numerical viewpoints, and one of the promising solutions is the finite

element method with higher-order element.

In this paper, we discuss a finite element method (FEM) which is applicable to identify the

stability of linear ideal MHD modes without a spectrum pollution. As discussed in Ref.[5], a

spectrum pollution observed in a spectrum analysis with FEM usually comes from the failure

of physics constraint due to choosing in-appropriately the basis functions used for expressing

independent vector variables. In the MHD spectrum code based on the energy principle[1], the

important physics constraint is come from the resonant condition on rational surfaces and the

plasma compressibility; details are discussed in Ref.[5]. In the cylindrical coordinate system,

this constraint requires that the following conditions must be satisfied completely
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where ξ is the displacement in the cylindrical coordinate system (r,θ ,z), and m is the poloidal

Fourier mode number. The hybrid element method (HEM) can satisfy these conditions by

choosing the basis function for X as ep and those for V and Z as ep−1, where p is the order

of the basis function e.
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In HEM, the conditions Eqs. (1) and (2) are satisfied everywhere in the system. This is the

complete condition for avoiding a spectrum pollution, and is essential when the numerical in-

tegral of the system is obtained based on the Newton-Cotes formula with the non-conforming

form finite element. On the other hand, when a quadrature rule, for example the Gauss-Legendre

(G-L) quadrature, is used instead of the Newton-Cotes formula, this condition can be relaxed

as that Eqs. (1) and (2) and need to be satisfied only at specified points within the domain of

integration. The COOL method was developed to utilize this advantage[6], and has been applied

for stability codes in plasmas[7, 8].

From the viewpoint of the physics constrains required for avoiding a spectrum pollution,

the original HEM and the COOL method implement them successfully and realize to avoid

that almost perfectly. However, to avoid completely a spectrum pollution, it is necessary to

confirm the property of the numerical integration in the radial direction, and hence, we briefly

revisit the finite element method used for identifying the ideal MHD stability based on the

energy principle in an axi-symmetric system. For simplicity, we pay attention to the marginal

ideal MHD stability, and hence, the plasma compressibility term and the plasma inertia term

are neglected. In this case, the perturbed plasma potential energy expressed with the plasma

displacement ξ ∝ exp(−ınφ) can be written as

Wp = π
∫ a

0
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where X = ξ ·∇r, V = r(ξ ·∇θ −(ξ ·∇φ)/q), Dθ (X) = (1/q)∂X/∂θ − ınX , and other unknown

values are defined in Ref.[4]. As mentioned before, the HEM and the COOL method use the

order p basis function ep for X and the order p− 1 one ep−1 for V and Z. With these basis

functions, a series of the degree of integrand (polynomial) can be obtained as 2p, 2p− 1, and

2p−2. This indicates that it is necessary to use the numerical integral method which can yield

an exact result for polynomials of degree 2p. However, the numerical integral method used

in the original HEM with non-conforming form in Ref.[5] and the COOL method is that for

polynomials of degree 2p− 1; in particular, since the current version of the COOL method

satisfies the conditions Eqs. (1) and (2) and only at Gauss points, it is impossible to increase the

degree of polynomial to be solved exactly.

To fix the problem, we apply the G-L quadrature to HEM. This is because HEM satisfies

the conditions Eqs. (1) and (2) everywhere, and enables to choose arbitrary the points used for

a numerical integral (Gauss points). For example, when ep basis function is used for X , the
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number of Gauss points, k, is determined as k ≥ p + 1, because the G-L quadrature with k can

exactly estimate an result for polynomials of degree 2k−1.
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Figure 1: (a) Shape of the equilibrium. (b) Pro-

files of p and q.

To confirm the importance of the order of

numerical integral, the COOL method and

HEM with the G-L quadrature (HEM-GL) are

implemented into the the MINERVA stabil-

ity code[9], and identify the edge localized

MHD mode stability; MINERVA uses FEM

only for the discretization in the radial direc-

tion, and the dependence on the poloidal an-

gle is decomposed into a Fourier series. The

shape and the profiles of the pressure p and

the safety factor q are shown in Fig. 1, and this equilibrium rotates toroidally with the profile

Ωt/ωA0 = 0.018(1−ψ48)4, where ωA0 is the toroidal Alfvén frequency at magnetic axis. Note

that this equilibrium is unstable for 10 ≤ n ≤ 36 ideal MHD modes.

We identify the stability of this equilibrium with the p = 2 COOL method and the p = 2 /

k = 3 HEM-GL, and confirm the numerical convergence of these methods on the radial mesh

number NR; a variety of NR is 256, 512, 1024 and 1536. As shown in Fig. 2 (a), the p = 2

COOL method requires more NR to identify the stability correctly, and in the case that NR is

too few, un-physics results are observed. The radial structure of this un-physics results typically

peaks near one of rational surface as shown in Fig. 2 (b); this is the n = 34 un-physics result with

NR = 512, and this mode peaks near nq = 39. On the other hand, with HEM-GL, no un-physics

result is observed as shown in Fig. 3 (a), and the radial structure of the n = 34 physics result

can be obtained with NR = 512 (Fig. 3 (b)); this is an edge-localized MHD mode with sheared

toroidal rotation.

From these results, we have developed successfully a multi-order finite element method by

applying the Gauss-Legendre quadrature numerical integral method into the hybrid element

method. This method realizes to solve a non-Hermite linear ideal MHD equation including

toroidal rotation without a spectrum pollution.

References

[1] Bernstein I B, Frieman E A, Kruskal M D and Kulsrud R M 1958 Proc. Roy. Soc. London

A 244 17

[2] Gruber R, Troyon F, Berger D, Bernard L, Rousset S, Schreiber R, Kerner W, Schneider W

and Roberts K 1981 Comput. Phys. Commun. 21 323

39th EPS Conference & 16th Int. Congress on Plasma Physics P2.045



10 20 30 40

0
0.

05
0.

1
0.

15

COOL p=2

NR = 1536
NR = 1024
NR = 512
NR = 256

I
A

0

n

(a)

0 0.5 1

0
1

2
R

e(
Y

m
), 

Im
(Y

m
)

s

Re(Ym)
Im(Ym)

(b)

Figure 2: (a) Dependence of γ on n with different numbers of NR with the p = 2 COOL method.

(b) Radial structure of n = 34 mode when NR = 512; γ/ωA0 = 0.1487.
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Figure 3: (a) Dependence of γ on n with different numbers of NR with the p = 2 / k = 3 HEM-

GL. (b) Radial structure of n = 34 mode when NR = 512; γ/ωA0 = 0.0292.
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