Sonic-flow gyrokinetic simulations with a unified treatment of all length scales

A. Y. Sharma1, B. F. McMillan2, J. Dominski1

1Princeton Plasma Physics Laboratory, Princeton, NJ, USA
2Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, UK

Introduction

Conventional sonic-flow gyrokinetics \cite{1} uses a 2-component potential, $\phi = \phi_0 + \phi_1$, where ϕ_0 is a specified (not self-consistent) large, long-wavelength potential, and ϕ_1 is a small, short-wavelength potential. However, ordering the parallel vorticity to be small \cite{2}, $|\nabla \times u|\Omega^{-1} \ll 1$, allows a unified description of large, intermediate and small amplitude flows on large, intermediate and small length scales, respectively. We choose to have a Lagrangian where the fields are in the symplectic part, and, as a result of doing so, it is not obvious how to get explicit equations of motion. We have found a method for dealing with such systems when there is an ordering parameter.

Equations

Our electrostatic, slab single-particle Lagrangian \cite{3} is

$$L_p = \left[A(R) + v_\| \dot{b} + u \right] \cdot \dot{R} + \mu \dot{\theta} - \left(\frac{1}{2} v_\|^2 + \mu B + \frac{1}{2} u^2 + \langle \phi \rangle \right), \quad (1)$$

where $u = B^{-1} \dot{b} \times \nabla \langle \phi \rangle$ and the sonic-flow terms are the third terms in the brackets and parentheses. Our Vlasov-Poisson system for two-dimensional potential perturbations is

$$f \cdot \dot{R} f_i = 0,$$

$$\dot{R} = u + v_\| \dot{b} + B^{-1} \dot{b} \times \dot{u}_1,$$

$$\dot{v}_\| = 0,$$

$$0 = \int d^6 Z \delta (R + \rho - r) [B_\|^* f + B^{-1} \nabla \cdot f \dot{u}_1], \quad (2)$$

where

$$B_\|^* = \dot{b} \cdot (B + \nabla \times u), \quad (3)$$

$\dot{u}_1 = (\partial_t + u \cdot \nabla) u$ and the terms relating to \dot{u}_1 are implicit. Both \dot{R} and the Poisson equation (2) depend on the time derivative of the field. Our linearized Poisson equation goes to $-B^{-2} n_0 \nabla^2 \phi = \delta n$ in the $k_\perp \rho_e \sim \epsilon$ limit. As u appears outside the Hamiltonian (in the symplectic part) (1), implicit time-dependence prevents application of standard direct numerical schemes.
Pull-back to original coordinates

For \(k_\perp \rho_t \sim \varepsilon \), we have the small-flow representation,

\[
x = R + \rho + B^{-2} \nabla \phi(R) + \mathcal{O}(\varepsilon^2)
\]

\[
= R + \rho + \mathcal{O}(\varepsilon),
\]

and the sonic-flow representation,

\[
x = R + \rho + B^{-2} \nabla [\phi(R) - \langle \phi \rangle] + \mathcal{O}(\varepsilon^2)
\]

\[
= R + \rho + \mathcal{O}(\varepsilon^2).
\]

Thus, we see that the sonic-flow representation has a smaller difference between the actual location of the particle \(x \) and the gyroring, \(x' = R + \rho \), which is where \(\langle \phi \rangle \) is evaluated [4].

Distribution functions: small vs. sonic flow

We define a Maxwellian in the small- and sonic-flow gyrokinetic formalisms, and determine the corresponding particle distribution in original coordinates. For \(k_\perp \rho_t \sim \varepsilon \), for small flows we have

\[
f = (2\pi)^{-3/2} \exp(-\frac{1}{2} v^2)
\]

\[
= (2\pi)^{-3/2} \exp[-\frac{1}{2} v^2 - \frac{1}{2} u^2 + \mathcal{O}(\varepsilon^2)]
\]

\[
= (2\pi)^{-3/2} \exp(-\frac{1}{2} v^2 + \mathcal{O}[\varepsilon^2]),
\]

and for sonic flows we have

\[
f = (2\pi)^{-3/2} \exp(-\frac{1}{2} v^2)
\]

\[
= (2\pi)^{-3/2} \exp(-\frac{1}{2} v^2 + \mathcal{O}[\varepsilon^2]).
\]

We find that these distributions are compatible.

Numerical scheme

We choose to use a \(\delta f \) PIC code, as in [5], with \(f = f_0 + \delta f \). As our \(B_\parallel \) is potential-dependent (3), care is needed with initialisation. The evolution of the markers proceeds as follows.

1. Take an initial RK4 step by neglecting the terms involving \(\dot{u}_1 \).

2. Compute a cubic spline representation of \(R(t) \) and \(\delta f(t) \) on the interval \([t, t + \Delta t] \), where \(\Delta t \) is the time step.

3. Compute \(\dot{u}_1 \) via \(R(t), \delta f(t) \rightarrow n(t) \rightarrow \phi(t) \rightarrow u(t) \) and finite differences.
4. Take an RK4 step including all terms by using this estimated value of \dot{u}_1.

5. Iterate to desired level of convergence.

Alternatively, a multistep or hybrid method could be considered.

An example problem

We may test (Figure 1) our iterative scheme with an equation that is of a similar form to our gyrokinetic system of equations, and permits analytic solution,

$$\dot{y} = e^{-y} + \varepsilon \dot{y}.$$ \hfill (4)

Figure 1.

Absolute error per unit time, versus timestep h, of the augmented RK4 scheme used to solve Equation (4), for $\varepsilon = h$ and $\varepsilon = h^2$. These are plotted in black with the expected scaling shown as a red trace.

Figure 2.

Kelvin-Helmholtz instability growth-rate spectra, with only the difference between the positive- and negative-shear growth rates plotted.

Kelvin-Helmholtz instability

Conventional Kelvin-Helmholtz is symmetric in sign of vorticity, but in extended-MHD, an asymmetry appears [6]. Asymmetry also appears in the sonic-flow gyrokinetic model and is of the same magnitude (Figure 2).

Conclusions

A sonic-flow gyrokinetic theory with a unified treatment of all length scales has been numerically implemented. The Vlasov-Poisson system (2) is obtained as a whole, directly from the gyrocentre Lagrangian (1), and corresponds to the Hasegawa-Mima equation [7] in the small-flow and $k \perp \rho_t \ll 1$ limits. We use an iterative numerical solution of our Vlasov-Poisson system (2), and this iterative scheme may have general applications. We see sonic-flow symmetry-breaking...
that depends on the sign of $\dot{b} \cdot \nabla \times u$ (Figures 2 and 3). Code verification has been performed with basic slab instabilities. The Poisson solver (using the same numerical scheme [8] as the ORB5 code) is capable of solving 3D global tokamak geometry but is used here for slab and cylindrical cases.

Figure 3. Small- (top) and sonic- (bottom) flow blob propagation: sonic-flow blobs exhibit a shift in the rotation frequency of the vortices that depends on the sign of $\dot{b} \cdot \nabla \times u$.

