Thermal Transport analysis for the High-β_N Discharge on EAST

S.Y. Zheng,1 X. M. Zhang,1 E. B. Xue,1 L. M. Yu,1 X. Gao,2 J. Huang,2 Y. Xiao,3 S. Y. Ding,2 H. Q. Liu,2 Q. Zang,2 B. Lv,2 Y. Y. Li,2 T. Zhang,2 and EAST Team2

1 Department of Physics, East China University of Science and Technology, Shanghai 200237, P. R. China
2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
3 Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

Abstract

Experiments on EAST tokamak have been performed with high normalized beta and favorable energy confinement. The thermal transport properties of the typical High-β_N discharge on the EAST tokamak is studied, and gyrokinetic non-linear simulation is carried out in this paper. Both of the ion and electron thermal diffusivities (χ_i, χ_e) normalized to Gyro-Bohm diffusivity decrease with β_N increasing. The growth rate of electrostatic turbulence is increased with β_N when β_N is less than 1.5, and it is decreased when β_N is up to about 1.7. Electrostatic turbulence is suppressed obviously by β_N when it is up to 1.9. TEM transfers to ITG when β_N is about 1.5.

1. Introduction

The normalized plasma pressure β_N is a key figure of merit for high fusion gain operation in steady-state tokamak since the fusion gain Q, and the faction of bootstrap current (f_{BS}) are proportional to β_N.1,2 High-β_N, non-inductively-driven discharges are perfect candidates for future burning plasma devices. With stable high NBI powers of up to 28MW and low gas puffing, a new record in fusion performance has been achieved in JET-ILW.3 High-β scenarios have also been developed in ASDEX Upgrade which favorably extrapolates to large devices like ITER and DEMO.4 Discharges with input power of around 4MW usually reached β_N of 1.5~1.7 and H_{98y_2} of 1.6~1.8. Discharge with higher input power of 8MW reached β_N of 2.7, H_{98y_2} of 1.3 and high bootstrap current faction of 0.84. The discharge with the highest β_N has the nearest parameter range to the JT-60SA target. Since 2015, reproducible discharges with $\beta_N > 1.5$ were achieved on EAST.5 In this paper, thermal transport properties of the typical high-β_N discharge is given by TRANSP and gyrokinetics simulation are also carried out.
2. Experimental setup

A typical high β_N discharge on EAST are chosen for discussion. The plasma current is 400kA and the toroidal magnetic field is 1.56T. The LHW is injected at $t=2s$, as a result of which the loop voltage decreased by around 0.5V. Four of the available NBI sources were turned on in a specific order. With fully injection of 4.8MW NBI, H_{98y2} reaches 1.1 and β_N reaches 1.9 at around $t=4.5s$. β_N is increased with NBI power obviously in LHW plasma, as seen in figure 1. β_N becomes larger at 0.3s later of each NBI injection time.

![Figure 1. β_N versus NBI input power at the injection time (stars) and 0.3s later of each time (cycle).](image)

3. Heat transport analysis for the high-β_N discharge

To investigate the micro-turbulence properties at high-β_N case, we use global gyrokinetic toroidal code GTC [6] to analysis. The realistic equilibrium is obtained from EFIT [7] and plasma parameter profiles are given by TRANSP. Figure 2 shows Logarithmic graph of three electrostatic modes at 3.7s, and electrostatic modes saturate at $t=40$ $(50*Cs/R_0)$ by non-linear simulation. TEM is dominant before $t=3.3s$, then TEM transfers to ITG, which can be seen from figure 3. Figure 4 shows the growth rate (γ) of three electrostatic turbulence modes with β_N at different minor radius from core to edge at 3.7s. γ increases first and then decreases with β_N. The electrostatic turbulence is effectively suppressed as β_N grows up to 1.9.
In order to investigate the dependence of thermal diffusivities on the normalized beta, χ_i and χ_e normalized by Gyro-Bohm diffusivity are calculated by GTC, and their variation tendency are shown in figure 5. χ_i and χ_e decreases with β_N when the turbulence is saturate.
4. Conclusions

Experiments on the EAST tokamak have extended the high-\(\beta_N\) scenario towards the steady-state burning plasma regime by the combination of NBI heating and LHW. The normalized beta reaches 1.9 and the energy confinement factor reaches 1.0. The ion temperature and electron temperature both become strongly peaked in the core during the higher \(\beta_N\) phase and leads to the ITB formation. The electron and ion thermal diffusivity, \(\chi_e\) and \(\chi_i\) decrease with \(\beta_N\). The gyrokinetics simulation results show that the electrostatic turbulence growth rate is increased with \(\beta_N\) first and then decreased. Electrostatic turbulence is suppressed by \(\beta_N\) when it is about 1.9. TEM transfers to ITG when \(\beta_N\) is about 1.5. Further study will be carried out to understand the electromagnetic turbulence during high-\(\beta_N\) discharges.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11675053 and Nos. 111875131) and the National Magnetic Confinement Fusion Program of China (Grant Nos. 2015GB110005). Numerical computations were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics, Chinese Academy of Sciences.

References