Alterations in anode sheath behavior in a leaky DC discharge system

Prashant K. Barnwal, R. Narayanan, S. Kar, A. Ganguli and R. D. Tarey

Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India, 110016

This paper reports the behavior of anode sheath in a planar dc discharge system brought about by changing the plasma boundary. Although no Negative Differential Resistance (NDR) region was observed in the current–voltage (I_d-V_d) characteristics of the discharge in fully open or fully closed cases [1], an NDR region (sudden increase in I_d along with sudden drop in V_d) is observed in partially open cases due to the plasma leaking into the stainless steel (SS) chamber. It is shown that there is an ion sheath formed at the anode before the NDR which changes into an electron sheath after the NDR and that the flipping from an ion to electron sheath is an outcome of the large current required to be supplied by the anode.

Another interesting feature observed is that as I_d and V_d increase monotonically from their initial values, a sharp kink [a sudden, small increase (drop) in I_d (V_d)] can be seen in the discharge characteristics. After the kink there is a small reduction in the slope of the I_d-V_d characteristics indicative of an increase in conductance of the circuit. This is also borne out by the difference between the anode and the plasma potentials (through LP measurements).

1. Introduction

It is well-known that plasma being quasi-neutral, sustains negligible electric fields within its volume with most of the potential differences ($p.d.$) being dropped across the plasma-boundary wall, also termed as sheath regions. These sheaths may be ion rich, electron rich or may even develop into a double layer depending on the discharge conditions and electrode geometry. In general, ion sheaths are the norm at the cathodes, primarily because of the fact that electron mobility is much larger than ions which results in electrons being lost from the plasma faster than ions. Hence, a potential barrier is created between plasma and boundary to protect further loss of electrons as well as accelerate the ions from plasma to electrode so as to maintain quasi-neutrality in the plasma volume. At the anode, electron sheaths are usually formed due to the positive bias on the electrode w.r.t. the plasma potential (V_p) which demands electrons to bleed out of the plasma so as to maintain the discharge current (I_d). In some cases, so as to prevent the excessive bleeding of the electrons, plasma tends to develop a double layer (back-to-back electron-ion sheath) [2, 3]. The dynamical response of the sheath to different configurations has been under investigation in the recent past [4, 5]. It is observed that by increasing the size of the positively biased electrode, the nature of the sheath may change i.e., a transition of an electron sheath to an ion sheath through an intermediate double layer [4]. Scheiner et. al. [5] have observed a transition of ion-to-electron sheath numerically...
(using particle-in-cell simulation) near a small electrode, when the electrode bias is changed from below to above V_p. In this paper we have discussed the development of a strong ion sheath with increasing I_d and its flipping into an electron sheath after the NDR under the effect of change in plasma-boundary wall.

2. Experimental Setup

In this experimental setup, asymmetric parallel electrodes (anode dia. = 38 mm, cathode dia. = 76 mm, separation = 35 mm) were placed inside a glass tube (I.D. \approx 95 mm) and enclosed by mica discs within the glass tube as shown in Fig. 1. The whole assembly was placed in a SS chamber. Both cathode and SS chamber were grounded. A small annular aperture in the mica disc was made on the anode side through which plasma can leak into the outer SS chamber (partially exposed).

The external circuit was completed through a variable DC power supply and a variable ballast resistor, R_B [not shown in Fig. 1]. The argon gas pressure (p) was varied from 800 mTorr to 1400 mTorr. An axially movable Langmuir probe (LP) [as shown in Fig. 1] is used for the estimation of different plasma parameters [electron density (n), electron temperature (T) and V_p]. The details of the LP procedure, data acquisition, its validity, and analysis of the plasma parameters from the I-V data can be found elsewhere [6]. An indigenously developed LABVIEW based semi-automated XY recorder was used for recording the experimental data.

3. Experimental Results and Discussions

3.1. Discharge Characteristics

Discharge characteristics are recorded by varying the DC power supply voltage (V_{sup}). Fig. 2 depicts the temporal variation of V_d with I_d for increasing V_{sup} upto $I_d \approx 50$ mA (I_d limited by R_B) and then decreasing up to a minimum I_d at 1200 mTorr pressure. Initially as I_d increases linearly up to ≈ 9 mA, V_d also increases but there is a kink [a small increase (drop) in I_d (V_d)] at $V_d \approx 275$ V which correspond to $I_d \approx 3$ mA [point (b) in Figs. 2 and 3]. At point (c) there is a sudden jump (≈ 9 mA to 16 mA) in I_d and a sudden drop (≈ 310 V to 225 V) in V_d [point (c) to (d) in Fig. 2], giving rise to a negative differential resistance (NDR) in the I_d - V_d characteristics [point (c) to (d) in Fig. 3]. This NDR is observed as a result of the discharge leaking out into the conducting SS chamber through a small annular aperture between the inner glass wall and the anode side mica disc. When I_d, further increases by increasing V_{sup}, there is another drop in V_d at $I_d \approx 40$ mA [from (e) to (f) in Fig. 3] which implies a second NDR in the I_d - V_d characteristics. It may be noted that this NDR is not sudden but controllable and slowly varying. Further decreasing I_d from its maximum value (≈ 50 mA), a...
hysteresis is observed in the discharge characteristics (g→h→j in Figs. 2 & 3). The evolution of plasma parameters at different I_d (1.5, 2.5 and 5 mA) can provide an insight into the evolution of the discharge characteristics, discussed in the subsequent section.

3.2. Plasma Profile

Fig. 4 shows the different plasma parameters estimated by LP located at the mid plane ($z \approx 18$ mm) between the anode and cathode. As I_d increases up to 7.5 mA (i.e. before NDR), the bulk electron density (n_e) increases from 2×10^9 cm$^{-3}$ to 8×10^9 cm$^{-3}$, warm electron density (n_w) increases from 2×10^6 cm$^{-3}$ to 10×10^6 cm$^{-3}$, V_p increases from ≈ 240 V to 325 V with the bulk electron temperature (T_e) being almost constant. After the NDR at $I_d \approx 16$ mA, $V_d \approx 225$ V [point (d) in Fig. 3] V_p decreases to ≈ 220 V. So there is a drop in V_p across the NDR from 325 V to 220 V.

3.3. Plasma Potential and Anode Potential

In the present experimental setup, the cathode is grounded along with the chamber and the anode is biased at a positive potential. This configuration ensures that V_p is always positive w.r.t. ground and hence one always obtains an ion rich sheath at the cathode, resulting in ion acceleration across the cathode sheath for ion induced secondary electron emission. It is well known that in DC discharges these secondary electrons are mostly responsible for the self-sustenance of the discharge. The interesting part is the variation of the $p.d.$ between V_p and anode potential ($V_A = V_d$ for the present case). Fig. 5 shows the plot of V_p in reference to V_A at different values of I_d. For $I_d \leq 3$ mA [i.e. up to the kink in the discharge characteristics, point (b) in Fig. 3], V_p is nearly equal to V_A so $\Delta V = V_p - V_A$ is negligibly small, indicative of absence of any stable sheath before the kink although it develops into an ion sheath after the kink and remains so right up to the NDR peak point [point (c) in Fig. 3], which can be seen in
Fig. 5 along with a drop of $\Delta V \approx +10$ V. After NDR, this ion sheath flips into an electron sheath. Figs. 6(a) and 6(b) shows axial plasma profiles at $I_d \approx 1.5$ mA and 2.5 mA respectively before the kink and Fig. 6(c) shows the same for $I_d \approx 5$ mA after the kink, which depict the same relative behaviour of V_p and V_A as discussed earlier in Fig. 5. As seen in Fig. 6, $V_p (z: 9 \text{ mm} < z < 27 \text{ mm})$ is $\approx V_A$ at low $I_d (\approx 1.5 \text{ mA})$ before the kink in $I_d -V_d$ curve ($I_d \approx 3 \text{ mA}$). As discharge approaches this kink region, one observes V_p close to the anode evolving into values greater than V_A whereas closer to the cathode, $V_p \approx V_A$, i.e., $V_p (z: 6 \text{ mm} < z < 21 \text{ mm}) > V_A$ and $V_p (z: 21 \text{ mm} < z < 27 \text{ mm}) \approx V_A$. Subsequent to the kink and before NDR ($3 \text{ mA} < I_d < 9 \text{ mA}$), V_A is lesser than V_p right up to the plasma-cathode sheath boundary. After NDR plasma profiles are difficult to obtain but as observed from Fig. 5, the anode sheath develops into an electron sheath i.e., an ion to electron sheath flip occurs across the NDR.

4. Summary

In this paper changes in the nature of anode sheath in a parallel plate DC discharge system has been discussed with respect to a leaking boundary. It is observed that an NDR is triggered when plasma leaks out into the outer stainless steel chamber from a small aperture in the surrounding dielectric boundary walls. As I_d increases, initially an ion sheath is formed at the anode with small drop across anode sheath which develops into a strong ion sheath after a kink in the discharge characteristics. The ion sheath observed before NDR flips into an electron sheath after the NDR in order to maintain the current requirement at the anode.

5. References