Large amplitude quasi-periodic structures mediated via coherent nonlinear oscillations and in 3D MagnetoHydroDynamics

Rupak Mukherjee, Rajaraman Ganesh, Abhijit Sen

institute for Plasma Research, HBNI, Gandhinagar, Gujarat, India

Within the framework of MagnetoHydroDynamics, a strong interplay exists between flow and magnetic fields. This interplay is known to lead to several interesting phenomena such as nonlinear non-dispersive Alfvén waves, recurrence phenomena and magnetic re-connection, to name a few. Using a set of divergence free sinusoidal flow fields (e.g., Arnold-Beltrami-Childress, Taylor-Green, Orszag-Tang etc) as initial flow profile we numerically integrate a self-consistent set of 3D, weakly compressible MHD equations [1] to study non-dispersive nonlinear Alfvén waves over a wide range of parameters [2]. It is inferred that these nonlinear Alfvén waves generate coherent large-amplitude oscillations between kinetic and magnetic energies.

Followed by this, we identify a novel phenomena called “Recurrence”, within the premise of single fluid MHD equations for initial flow fields which are chaotic [3]. Even though it appears counter-intuitive, the strong nonlinearity of the problem allows a selected initial flow fields to quasi-periodically reconstruct its structures despite the fact that its structure is completely distorted during the evolution of the plasma. Such magnetic recurrence phenomena mediated by a dynamical energy exchange between magnetic and velocity fields via a reconnection process (Fig. 1) is believed to have wide applications in controlling the disruptions in the magnetically confined plasmas. After demonstrating the numerical convergence, we attempt possible explanation using a simple Hamiltonian field model.

References

Figure 1: Nonlinear coherent oscillation of kinetic and magnetic energy with time generating nonlinear non-dispersive Alfvén waves. The kinetic and magnetic iso-surfaces ‘recur’ for the Taylor-Green flow.