Beta-induced Alfvén Eigenmodes Destabilized by Resonant Magnetic Perturbations in J-TEXT Tokamak

Linzi Liu¹, Ge Zhuang²,³, Nengchao Wang¹ and Ruihai Tong¹

¹ Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, China
² International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
³ School of Physical Sciences, University of Science and Technology of China, Hefei 230023, China

Beta-induced Alfvén Eigenmodes (BAEs) destabilized by resonant magnetic perturbations (RMPs) are investigated in J-TEXT tokamak. Two kinds of BAEs are observed with RMPs of finite amplitude. One is considered as m-BAE, due to the strong correlation with magnetic island, frequency characteristic, mode number and driving mechanism. Specifically: 1. The exciting threshold is studied. After RMPs penetration, m-BAE could be excited when the width of the magnetic island exceeds a threshold (about 2.6 cm) and lower than an upper limit (about 4.2 cm). A similar result is also found in the experiments that a pair of m-BAE is excited along with TM. 2. In the exciting condition range, the amplitude of m-BAE decrease with enlarging magnetic island. 3. The m-BAE forms a standing wave structure. The nodes of m-BAE are located around O point and X point of the magnetic island while the BAE perturbs between the O point and X point. 4. The frequency of detected m-BAE locates in the BAE gap calculated by NOVA-K code. Another mode is identified as the magnetic island-induced AE (labeled as MIAE-like mode in this work), consistent with the prediction of theory (Biancalani A. et al 2010 Phys. Rev. Lett. 105 095002). The frequency of MIAE-like mode is approximately proportional to the square of magnetic island width. In addition, the pressure gradients may have a driving effect on MIAE-like mode.

In addition, m-BAE becomes weaker and MIAE-like mode becomes stronger with growing magnetic island, so we assume that energy exchanging would take place between the magnetic island and m-BAE. The free-energy source of pressure gradients may have a driving effect on MIAE-like mode.