The open-source PIC code SMILEI: Physics modules & HPC capabilities

J. Derouillat1, A. Beck2, G. Bouchard3, M. Chiaramello4, A. Farjallah5, A. Grassi3, H. Kallala1,3, M. Lobet,1 F. Massimo2, F. Pérez4, C. Riconda4, T. Vinci4, I. Zemzemi2 and M. Grech4

1 Maison de la Simulation, Gif-sur-Yvette, France

2 Laboratoire Leprince-Ringuet, Palaiseau, France

3 Lasers, Interactions and Dynamics Laboratory, Gif-sur-Yvette, France

4 Laboratoire d’Utilisation des Lasers Intenses, Palaiseau, France

5 Intel Corporation, Meudon, France

SMILEI [1] is an open-source, collaborative Particle-In-Cell (PIC) code co-developed by plasma physicists and high-performance computing (HPC) specialists. This poster presents the current status of the project with a special focus on (i) the physics modules available and (ii) the HPC developments and its performance on the latest super-computer architectures.

Used by laser-plasma physicists and astrophysicists, the code benefits from a wide range of physics modules: arbitrary-angle tightly-focused laser injection, binary collisions, field and collisional ionization, QED processes in strong electromagnetic fields (inverse Compton scattering, Breit-Wheeler pair production), etc. Running in 1D, 2D and 3D cartesian geometries, the code also benefits from a quasi-cylindrical geometry with the electromagnetic fields decomposed on azimuthal modes, as well as from an envelope model for the propagation of laser pulses, e.g. for laser-wakefield acceleration.

On the HPC side, strong efforts have been made in terms of hybrid MPI-OpenMP parallelization including dynamic load balancing, and more recently on the development and implementation of an adaptive SIMD (vectorization) strategy [2].
