Electron capture by the exited hydrogen atom in the dense semiclassical
partially ionized plasma
E.O. Shalenov, M.M. Seisembayeva, K.N. Dzhumagulova, T.S. Ramazanov
IETP, Department of Physics, al-Farabi KazNU, al-Farabi 71, 050040 Almaty, Kazakhstan

The elementary processes in plasma have received considerable attention in many areas
of physics such as astrophysics, atmospheric science, atomic physics, molecular physics,
plasma physics, and surface sciences since the excitation and ionization of atoms and
molecules have provided useful structural information on the collision systems as well as the
physical information on environments of the collision systems. Especially, the electron-
impact excitation of atoms in plasmas has been of a great interest since the emission spectra
related to the excited atomic states would provide the useful information on plasma
parameters, such as plasma density and temperature. Recently, the physical characteristics and
properties of quantum plasmas have been extensively explored since the dense quantum
plasmas are ubiquitous and have been found in nano-scale objects in modern science and
technology, such as nano-devices, nano-wires, quantum dots, and semiconductor devices as
well as astrophysical compact objects. One of the elementary processes in plasma is the
electron capture process. In this work, the electron capture processes by the exited hydrogen
atom was investigated. Here we took into account the polarization of the exited atom in
different quantum-mechanical states. The motion of the electron in the field of the motionless
atom was considered on the basis of the perturbation theory and the solving of the equation of
motion. The interaction potentials between the electron and the hydrogen atom, taking into
account the quantum-mechanical effect of diffraction and plasma screening effects, were
presented in works [1-4]. In this work, the electron capture radius, which was determined by
equating the kinetic energy of impacting electron and the interaction energy between the
electron and the hydrogen atom, was presented. The trajectory of the electron in the field of
the atom was simulated [4]. Using the electron capture probability, the electron capture cross
section was calculated.

References