Reconstructing the fast-ion velocity distribution in the DIII-D tokamak during Alfvén eigenmode activity

B. Madsen¹, M. Salewski¹, W. W. Heidbrink², L. Stagner², M. Podestà³, D. Lin², A. Garcia², P. C. Hansen⁴, J. Huang⁵, and the DIII-D team

¹ Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark
² Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
³ Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America
⁴ Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
⁵ Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China

Fast-ion velocity-space tomography enables reconstruction of the 2D fast-ion velocity distribution from a set of 1D measurements. Here, we reconstruct for the first time the fast-ion velocity distribution for plasmas with high and low Alfvén eigenmode (AE) activity using the 4-view fast-ion D-alpha (FIDA) diagnostics in the DIII-D tokamak. We find that the fast-ion losses due to high AE activity are selective in velocity-space with a particularly strong density decrease in the population of co-going fast-ions with pitches greater than 0.2.