Production of collimated γ ray beams for e^-e^+ pair creation.

L. Esnault1, X. Ribeyre1, E. d’Humières1, J. L. Dubois1, D. Khaghani1, S. Jequier1, P. Lageyre1, L. Lancia2, J. R. Marques2

1Univ. Bordeaux-CNRS-CEA, CELIA, UMR 5107, Talence (France)
2LULI, Sorbonne Université, UPMC, Ecole Polytechnique-CNRS-CEA, Paris (France)

Despite being one of the most basic process of quantum electrodynamics (QED), and being responsible of the universe opacity to high energy photons [1], the electron-positron pair production by two photons collision ($\gamma\gamma \rightarrow e^-e^+$, linear Breit-Wheeler [2] process, LBW) has never been observed directly in the laboratory.

However, increasing available intensity at laser facilities make possible to create high brilliance \simMeV γ ray sources that could be used to observe this process for the first time [3].

We propose [4] to detect e^+ produced by LBW using two crossing γ ray beams (see Fig. 1). Those sources could be created in typical laser-solid experiments: some target e^- are accelerated from laser field and their propagation near a high Z atomic nuclei in the material can produce γ rays through the Bremsstrahlung process. However, e^- and γ propagation in a high Z material can also produce background e^-e^+ pairs through the Trident ($e^-Z \rightarrow e^-Ze^-e^+$) and Bethe-Heitler ($\gamma Z \rightarrow Ze^-e^+$) processes.

In this work, a semi-analytical model to estimate LBW pair production, and a complete simulation setup (using hydrodynamics, Particle-In-Cell and Monte Carlo codes) have been developed to simulate LBW and background e^+ production.

These tools could be used to investigate pair plasma jets in Active Galactic Nuclei [5], and further developments could help to test more advanced theoretical predictions [6] or measure the LBW cross section (widely used in QED) for the first time.

References