Particle acceleration in relativistic magnetospheres

B. Cerutti

Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France

Rapidly rotating neutrons stars and black holes are the central engines of some of the most extreme astrophysical phenomena such as gamma-ray bursts, pulsars, X-ray binaries, binary mergers or active galactic nuclei. The activity of these compact objects is often associated with the creation and the launching of a relativistic magnetized plasmas accompanied by efficient particle acceleration and non-thermal radiation, but the underlying physical mechanisms are still poorly understood. The particle-in-cell method is well-suited to model these processes from first principles. Recent numerical simulations have clearly established that relativistic magnetic reconnection within the magnetosphere of pulsars and black holes plays a crucial role in dissipating magnetic energy which is then efficiently channeled into energetic particles and high-energy radiation. Results will be discussed in the context of gamma-ray pulsars, merging binary neutron stars and weakly accreting Kerr black holes.