Investigating the outer magnetic field of Wendelstein 7-X using the magnetic probe

A. Knieps1, Y. Liang1, P. Drews1, D. Höschen1, Y. Suzuki3, J. Geiger2, C. Killer2, O. Grulke2, K.-P. Hollfeld1, T. Krings1, S. Liu1, D. Nicolai1, G. Offermanns1, K. Rahbarnia2, G. Satheeswaran1, B. Schweer1 and the W7-X team

1 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschungs Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany
2 Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
3 National Institute for Fusion Science, 509-5202 Toki, Japan

Wendelstein 7-X (W7-X) is a 5-fold-symmetric stellarator optimized for low plasma currents and good confinement. The aim of W7-X is to demonstrate long-running steady-state operation in Tokamak-like performance regimes [1], [2]. W7-X uses an island divertor configuration for handling heat- and particle-exhaust. In standard configuration, the magnetic field boundary topology consists of a $n/m = 5/5$ chain of separate islands intersected by the target plates of the divertor. In high-iota configuration the islands form a connected $5/4$ chain. Due to pressure gradient driven currents, the island topology can change significantly at high plasma beta values, potentially changing island width and phase as well as their radial position. Figure 1 shows an example in a 5/5 configuration obtained through a VMEC/EXTENDER calculation [3].

Figure 1: Poincaré maps and connection length plots of VMEC equilibria with $\beta = 1\%$ (left) and $\beta = 3\%$ (right) for edge $\iota = 1$ calculated using VMEC/EXTENDER [3]
The Probe Manipulator and the Combined Probe

The multi-purpose manipulator (MPM) at W7-X can be used to insert probe-heads into the plasma edge. The probe heads can be exchanged during the campaign. The manipulator is located in a bean plane at -159.3°, 17 cm below the midplane axis.

The combined probe has a length of 150.2 mm. It features a variety of measurement systems:

- 5 Floating potential pins
- Langmuir probes in triple probe configuration for electron temperature & density measurements
- An experimental ion sensitive probe for ion temperature and density measurements

<table>
<thead>
<tr>
<th>Coil</th>
<th>Winding no.</th>
<th>Eff. area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D - Radial</td>
<td>500</td>
<td>1.342 cm2</td>
</tr>
<tr>
<td>3D - Toroidal</td>
<td>500</td>
<td>1.464 cm2</td>
</tr>
<tr>
<td>3D - Vertical</td>
<td>500</td>
<td>1.83 cm2</td>
</tr>
<tr>
<td>Differential</td>
<td>2198</td>
<td>\approx 1 cm2</td>
</tr>
</tbody>
</table>

Table 1: Coil parameters

Figure 2: The combined probe FZJ-COMB2

- Magnetic coils
- A tungsten material sample

The magnetic coil system (as seen in figure 2 in the center of the probe) consists of 3 concentric coils for measurements of the toroidal, radial, and vertical field components as well as a differential coil pair for measurement of $\partial B_{tor}/\partial r$.

Details about the coils can be found in table 1.

Magnetic Configurations

During the second week of probe operation data were recorded in standard configuration as well as in high-iota configuration. The edge of the standard configuration is characterized by a 5/5 chain of disconnected islands intersected by the divertor target plates. In high-iota configuration the islands form a connected 5/4 island chain. As seen in figure 3, the manipulator travel path intersects the inside of the islands near the O-point.
Observations from OP1.2a (first divertor campaign)

For each measured discharge two manipulator plunges were performed:

- A vacuum measurement right before plasma startup
- A plunge into the active plasma

Linear drifts both in-between plunges and between beginning and end of each plunge were compensated. This relies on the assumption that the magnetic field does not change significantly over the plunge duration.

Figure 4 compares two discharges, one with higher beta and a larger negative toroidal current (orange) and another one with lower beta and a smaller positive toroidal current (blue). The discharge indicated in orange (171025.044) shows plasma current contributions of about 3 mT to the radial and 4 mT to the toroidal magnetic field. The vertical field measurement saturated during the second plunge, shifting the integrated signal. The comparison discharge in blue shows lower-sloped profiles. However, the plasma in this discharge lasted longer than the signal acquisition time. Therefore the drift correction is not necessarily accurate in this discharge, which gives a potential explanation for the profile shifts.
Improvements for the upcoming Campaign OP1.2b

In order to improve the magnetic field measurements in the upcoming campaign, the magnetic signals will be split into a slow and a fast channel. This will reduce contention between high bandwidth and low drift requirements. The slow channel will then be integrated by an analog low drift integrator before digitization.

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References

[1] L. Wegener, Status of Wendelstein 7-X construction, Fusion Engineering and Design 84(2-6), 84 (2009)