Numerical studies of beam smoothing methods and its influence on filamentation instability

Bin Li, Zhanjun Liu, Liang Hao, Chunyang Zheng, Jiang Xiang

Institute of Applied Physics and Computational Mathematics (IAPCM), Beijing, China

Large scale filamentation instability in Hohlraum is investigated by a three dimensional parallel laser plasma simulation code LAP3D [1] developed at IAPCM. The focus lies on how to controlling the instability by spatial and temporal smoothing methods [2], respectively.

Spatial smoothing method is illustrated by propagation of a beam smoothed by the continuous phase plate (CPP), the research of which includes as follows: 1) features of filamentation instability when it develops [3]; 2) the threshold of the instability for a CPP beam; 3) influence of distribution of strong speckles on the instability; 4) conditions for the onset of the beam deflection [4].

Spatial smoothing method is illustrated by propagation of a beam smoothed by the spectral dispersion smoothing (SSD), the research of which includes as follows: 1) influence of modulated frequency on the beam propagation [5]; 2) the threshold of filamentation instability for such a beam.

REFERENCES