Understanding tungsten divertor sourcing, SOL transport, and its impact on core impurity accumulation in DIII-D high performance discharges *

D.M. Thomas¹, T. Abrams¹, J. Barton², J.A. Boedo³, A.R. Briesemeister⁴, D. Buchenauer², I. Bykov⁵, C.P. Chrobak¹, R. Ding⁵, D. Donovan⁶, J.D. Elder⁷, B.A. Grierson⁸, H.Y Guo¹, J. Guterl⁴, E.M Hollmann³, C.J. Lasnier⁹, A.W. Leonard¹, M.A. Makowski⁹, A.G. McLean⁹, R. Nygren², T.W. Petrie¹, D.L. Rudakov⁵, P.C. Stangeby⁷, E.A. Unterberg⁴, B. Victor⁹, W.R. Wampler², H.Q. Wang⁴, J.G. Watkins², M. Zach⁶

¹General Atomics, General Atomics, San Diego, CA, USA
²Sandia National Laboratory, Albuquerque, NM, USA
³University of California San Diego, San Diego, CA, USA
⁴Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁵Oak Ridge Associated Universities, Oak Ridge, TN, USA
⁶University of Tennessee, Knoxville, TN, USA
⁷University of Toronto, Toronto, ON, Canada
⁸Princeton Plasma Physics Laboratory, Princeton, NJ, USA
⁹Lawrence Livermore National Laboratory, Livermore, CA, USA

The DIII-D metal rings campaign demonstrated the ability to run high performance plasmas with tungsten at the outer divertor strike point and provided detailed information on W sourcing and transport from the divertor in a mixed material environment. Using two isotopically distinct toroidal rings of W-coated metal inserts, advanced tokamak (AT) discharges (Pₐₓ=14 MW, Hₙ=1.5-1.6, βₙ=3.6-3.7) show performance similar to all-C divertor discharges, with low core W concentrations (few 10⁻⁵) for the case of central ECH and rapid ELMs (fₑₘₗ=200 Hz). W impurities transported to the midplane, measured by collector probes inserted in the far SOL, predominantly originate from the outer strike point (OSP) region rather than from a W source positioned in the far SOL. Conversely, for discharges with larger, less frequent ELMs (fₑₘₗ~60 Hz) the W impurities are shown to transport equally from the OSP and far-SOL regions. Direct measurement of gross W sputtering shows peak source rates during Type-I ELMs of 1-2×10ⁱ⁶/cm²/s, many times the inter-ELM rate (1-2×10ⁱ⁵/cm²/s). Detailed analysis shows that C impurity and D fuel ions contribute equally to W divertor sourcing during ELMs, in contrast to the JET-ILW where D ions are the main contributor, or to the inter-ELM case on DIII-D where C dominates the W sputtering. In addition, ELM-resolved measurements of W sourcing for differing BT directions reveal the peak W erosion rate during large ELMs shifts radially due to a combination of drift effects and ELM wetted area. For L-mode experiments, OEDGE modeling suggests that measured asymmetries in the collected W may be explained by a W buildup in the SOL at the crown of the plasma, driven by the parallel grad-T, force.

*This work was performed in part under the auspices of the U.S. Department of Energy by General Atomics under DE-FC02-04ER54698, DE-FG02-07ER54917, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC02-09CH11466, DE-AC52-07N27344, and DE-AC05-00OR23100.