The reaction of O+ with HD at low temperatures

T. D. Tran¹, A. Kovalenko¹, S. Rednyk¹, Š. Roučka¹, R. Plašil¹ and J. Glosík¹

¹ Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

The reaction of O+ with HD has two channels

\[O^+ + HD \xrightarrow{k_{OH}} OH^+ + D, \]
\[k_{OD} \xrightarrow{OD^+ + H}. \]

The total reaction rate coefficient is the sum of rate coefficients of both channels \(k = k_{OH} + k_{OD} \) reaction. \(k \) and the isotopic branching ratio \(k_{OH}/k \) have been measured as a function of temperature using a 22-pole ion trap apparatus [1]. The apparatus allows measuring reaction rate coefficients in the temperature range 15 – 300 K. The systematic uncertainty of measurement is 20%. First results are shown in the figure. Our measurements will be compared with previous studies, where the lowest measuring temperature is 93 K [2,3,4].

Figure: Example of time evolution of numbers of O⁺ (■), OH⁺ (●), OD⁺ and OH₂⁺ (▲), OHD⁺ and OH₃⁺ (▼) ions at low temperatures in the trap. Ions of the same mass cannot be distinguished from each other. Ions OHD⁺, OH₃⁺ and other products OD₂⁺, ODH₂⁺ and H⁺ are not involved in fit model. (a) Measurement with high number density of HD. The rate of reaction is too fast to observe production of OH⁺ and OD⁺. However, by fitting a decay of O⁺ we can get the total reaction rate coefficient \(k \). (b) Measurement with low number density of HD. \(k \) and also \(k_{OH}/k_{OD} \) can be determined.

Acknowledgements: We thank the Technical University of Chemnitz and the DFG for lending us the 22-pole ion trap instrument and professor Dieter Gerlich for discussion. This work is partly supported by GACR Grant No. 17-19459S and 17-18067S, by GAUK Grant No. 1584217 and 1168216.

References