Open, Any-Platform, Leadership-Scale PIC Simulations for Humans

(No Hooks Attached)

R. Pausch1,2, R. Widera1, M. Garten1,2, A. Debus1, I. Goethel1, A. Matthes1,2, B. Worpitz1,2, S. Starke1, J. Kelling1,2, S. Kossak1,2, S. Bastrakov1, T. Kluge1, G. Juckel1, U. Schramm1,2, T.E. Cowan1,2, M. Bussmann1, A. Huebl1,2

1 Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
2 Technische Universität Dresden, Dresden, Germany

PIConGPU is a fully open, community-driven, 3D and 2D3V particle-in-cell code for the age of heterogeneous, many-core driven supercomputing. Running from a single source C++ code base PIConGPU supports both "legacy" CPU architectures as well as modern and highly parallel architectures such as OpenPOWER, XeonPHI, and Nvidia GPUs.

Especially the latter enable few-hour turnaround full 3D simulations for complex studies such as laser-ion acceleration. The resulting dramatic demands in post-processing (PBytes+) are efficiently addressed with implemented in-situ data reduction techniques. Those allow asking e.g. for a wide range of observables relevant for experiments - up to 100x during the time frame of an actual beam time. This is complemented by modern methods for photon generation, transport, and X-ray interaction.

Driving, re-using and publishing performance-portable libraries, PIConGPU aims to provide documented, installable and re-usable software components for the community, well suited for open data (openPMD) and open science workflows without restrictions. Latest developments further include a python-centric, extensive framework for specific experiments, which provides all of the above in an intuitive, non-expert user interface.