Impact of nonuniform zonal flow on the resistive-drift eigenmode near adiabatic state

C.-B. Kim1, C.-Y. An1, B. Min1

1 Soongsil University, Seoul, Korea

The profile of the eigenmode of the resistive-drift plasma with large growth rate is studied with a sinusoidally forced zonal flow V. A generalized vorticy ψ, which is the difference between the electron density and the vorticity, is found to be advected by the gradients of the density and the zonal vorticity. The phase difference δ between the electric potential and ψ is positive for the linearly growing mode. δ is found to be larger for larger zonal-flow amplitude whereas the growth is larger for smaller zonal-flow. Eigenmode is found to be localized with the width of less than $10\rho_s$ around the peak of V in the direction of the electron diamagnetic drift. Eigenmode is almost vanishing where V is fastest and parallel to the ion-diamagnetic drift. Extension to the turbulence with a spontaneous zonal flow and its implications to the formation of the transport barrier will be presented at the conference.