Observations of sheared turbulence in the H-mode E_r well by phase contrast imaging on DIII–D

J.C. Rost1, A. Marinoni1, E.M. Davis1, M. Porkolab1, K.H. Burrell2

1Massachusetts Institute of Technology, Cambridge, USA
2General Atomics, San Diego, USA

Phase Contrast Imaging (PCI) has been used on DIII–D to measure turbulent density fluctuations in several H-mode regimes, observing highly sheared turbulence in the E_r well. Two sources are identified: instabilities in the pedestal that extend into the E_r well and instabilities located in the well itself. PCI has a high bandwidth $10 \text{ kHz} < f < 2 \text{ MHz}$ and wavenumber-resolved measurements over $1 < k < 25 \text{ cm}^{-1}$, with a beam geometry that results in enhanced sensitivity to turbulence distorted by velocity shear. The sheared edge turbulence resolves into two frequency ranges with well-defined lab-frame phase velocities.

Studies of the medium frequency $f < 800 \text{ kHz}$ turbulence in the Quiescent H-mode regime (QH-mode) scanned the plasma edge through the PCI beam, allowing the radial structure of the sheared edge turbulence to be reconstructed, revealing turbulence with $k_r < 0$ on the inner half of the E_r well and with $k_r > 0$ on the outer half. Varying the injected torque in QH-mode plasmas shows that the lab-frame phase velocity of this turbulence varied directly with the $E \times B$ velocity at the top of the pedestal. In combination, these observations suggest that an instability located at the top of the pedestal extends into the E_r well, where the shear distorts the turbulence.

The high frequency, high phase velocity turbulence is, in contrast, observed to change on sub-ms time scales with changes in the E_r well, forming within 100 μs of the L-H transition, and appearing and vanishing as the E_r well collapses and reforms during Limit-Cycle Oscillations (LCO) and at an ELM. The lab-frame phase velocity is seen to vary with $V_{E \times B}$ at the center of the well. The instability is sensitive to the shape of the E_r well, being absent in the very narrow well seen in QH-mode but often present in the wider well seen in ELM-free H-mode and wide-pedestal QH-mode.

The research presented here characterizes highly-sheared density turbulence in the pedestal and E_r well of non-ELMing H-mode regimes with the ultimate goal of understanding the role of turbulence in determining the structure in these regimes.

*Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and DE-FC02-99ER54512.