Hot-spot emission properties in a warm plastic-shell implosion on OMEGA

<u>W.L. Shang</u>¹, C. Stoeckl², R. Betti², S.P. Regan², T.C. Sangster², S.X. Hu², A. Christopherson², V. Gopalaswamy², D. Cao², W. Seka², D.T. Michel², A.K. Davis², P.B. Radha², F.J. Marshall², R. Epstein², A.A. Solodov²

¹ Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 China

² Laboratory for Laser Energetics, University of Rochester, Rochester NY 14623

A warm plastic-shell implosion was performed on the OMEGA laser system. The measured corona plasma evolution and shell trajectory in the acceleration phase are reasonably simulated by the one-dimensional LILAC simulation including the nonlocal and cross-beam energy transfer models. The results from analytical thin-shell model reproduce the time-dependent shell radius by LILAC simulation, and also the hot-spot x-ray emissivity profile at stagnation predicted by Spect3D. In the Spect3D simulations within a clean implosion, a "U"-shaped hot-spot radius evolution can be observed with the Kirkpatrick-Baez microscope response (the photon energy is from 4 to 8 keV). However, a fading away hot-spot radius evolution was measured in OMEGA warm plastic-shell implosion because of mixings. The distance from the measured hot-spot radius evolution shape to the "U" shape could be a new criterion for an experimental implosion performance. To recover the measured hot-spot x-ray emissivity profile at stagnation, a non-isobaric hot-spot model is built, and the normalized hot-spot temperature, density, and pressure profiles (normalized to the corresponding target-center values) are obtained.

References:

[1] V. N. Goncharov, T. C. Sangster, R. Betti, T. R. Boehly et al., Phys. Plasmas 21, 056315 (2014).

[2] P. B. Radha, J. Delettrez, R. Epstein, V. Yu Glebov, R. Keck et al., Phys. Plasmas 9, 2208 (2002).