Estimations of disruption forces in the COMPASS Upgrade tokamak
V. Yanovskiy¹, J. Havlicek¹, M. Hron¹, M. Komm¹, E. Matveeva¹, R. Panek¹, J. Urban¹
and the COMPASS team
¹Institute of plasma physics of the CAS, Prague, Czech Republic
²Fac. Math & Phys., Charles University, V Holešovičkách 2, 180 00 Prague 8,
Czech Republic

This paper presents the analysis of disruptions in COMPASS Upgrade tokamak [1], which is a medium-size high-magnetic-field device currently in the conceptual design phase. Due to the high plasma current (up to 2 MA) and the strong magnetic field (up to 5 T), large electromagnetic forces on conducting structures surrounding plasma are expected during disruptions. To address this issue, electromagnetic loads on the vacuum vessel during disruptions are estimated analytically using a novel approach to the problem [2]. These analytical results will serve as a baseline for more detailed numerical calculations considering a volumetric 3D description of conducting structures.

The uncertainties in the extrapolation of the available experimental data on disruptions to new tokamaks point at a potential threat to their structural integrity [3]. Therefore, the development of adequate protective means becomes a necessity. For that reason, the possibility of implementation of a disruption force damper (DFD) [4] within the present design constraints is considered.

The study reveals optimal choice of the vacuum vessel parameters which guarantee safe operation of the COMPASS Upgrade tokamak.

https://doi.org/10.1088/1361-6587/aab056