Experimental evidence of radiation reaction effects in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam

S. P. D. Mangles¹

¹The John Adams Institute for Accelerator Science, Imperial College London, London, UK
²Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan, USA
³Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
⁴York Plasma Institute, Department of Physics, University of York, York, UK
⁵SUPA Department of Physics, University of Strathclyde, Glasgow, UK
⁶Centre for Mathematical Sciences, Plymouth University, UK
⁷University of California, Los Angeles, Los Angeles, California, USA
⁸Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
⁹School of Mathematics and Physics, The Queen’s University of Belfast, Belfast, UK
¹⁰Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
¹¹Physics Department, Lancaster University, Bailrigg, Lancaster, UK
¹²Helmholtz Institut Jena, Jena, Germany
*E.gerstmayr15@imperial.ac.uk

We present experimental evidence of radiation reaction in the collision of a highly relativistic electron beam generated by laser-wakefield acceleration ($\varepsilon > 500$ MeV) with an intense laser pulse ($a_0 > 10$). This was recently published in [1]. We measure the electron and γ-ray spectra from inverse Compton scattering simultaneously to infer the conditions at the point of interaction independently. The energy loss in the electron spectrum after the collision and the γ-ray signal are correlated, consistent with a quantum description of radiation reaction. The generated γ-ray spectrum reaches a critical energy $\varepsilon_{\text{crit}} > 30$ MeV, being the highest γ-ray energy from an all-optical inverse Compton scattering scheme reported so far [2,3,4].