Frequency sweeping events in cyclotron emission of energetic electrons in ECR discharge plasmas

M.E. Viktorov1, A.G. Shalashov1, E.D. Gospodchikov1, D.A. Mansfeld1, I.S. Abramov1, S.V. Golubev1

1 Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia

The complex dynamics have been observed in the spectra of the electron cyclotron emission of a nonequilibrium plasma created by powerful microwave radiation of gyrotron (37.5 GHz, 80 kW) under electron cyclotron resonance (ECR) conditions and confined in a tabletop mirror trap [1, 2]. The dynamic spectrum of the emission is a set of highly chirped radiation bursts with both increasing and decreasing frequencies which are repeated periodically. Such patterns are not described in the frame of a quasilinear approach which is standard for the description of a broadband plasma emission. From the other hand, the simultaneous observation of several chirping bursts in the same frequency range is typical for the formation of nonlinear phase-space structures in a proximity of the wave-particle resonances of a kinetically unstable plasma, also known as the “holes and clumps” mechanism [3]. Our data provide the experimental evidence for the spontaneous formation of self-consistent structures in the new frequency domain (a few GHz) linked to the electron cyclotron frequency in a laboratory mirror-confined plasma.

The work is done in the frame of the RSF grant (project 17-72-10288).

References