Fast ion confinement in the experiments with the increased magnetic field on the Globus-M spherical tokamak

N.N. Bakharev1), F.V. Chernyshev1), P. R. Goncharov2), V.K. Gusev1), G.S. Kurskiev1), A.D. Melnik1), V.B. Minaev1), M.I. Patrov1), Yu.V. Petrov1), N.V. Sakharov1), P.B. Shchegolev1), A.D. Sladkomedova1), V.V. Solokha1,2), A.Yu. Telnova1), S.Yu. Tolstyakov1)

\textsuperscript{1) Ioffe Institute, St. Petersburg, Russia
2) Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

In recent experiments on Globus-M, preceding tokamak disassembling, toroidal magnetic field B_{tor} and plasma current I_p were increased from 0.4 T and 200 kA up to 0.5 T and 250 kA respectively.

D-D beam-plasma neutron rate growth up to 40\% was observed after the B_{tor} and I_p increase in the discharges with the 26 keV D injection into D plasma. There are two main reasons for this improvement: electron temperature T_e rise and fast ion losses decrease. In these experiments central T_e and volume averaged T_e growth were recorded by 40\% and 20\% respectively mainly due to B_{tor} growth. To estimate the effect of the T_e change NUBEAM code \cite{1} was used, which predicts 20\% neutron rate growth. Modeling with the fast ion tracking algorithm \cite{2} shows 30\% decrease of the first orbit losses of the main beam energy component mainly due to I_p increase.

Increase of the magnetic field resulted in the change of the instabilities behaviour and their effect on fast ion confinement. Formerly in the 0.4 T experiments strong sawtooth oscillations usually suppressed other instabilities. In the 0.5 T experiments sawtooth oscillations coexisted with fishbone instabilities and TAEs. Also a new $m = 4$ $n = 1$ MHD mode was found which leads to fast ion losses and redistribution. Other experimental observations in the discharges with the increased magnetic field were made and discussed in the report.

Neutron rate growth in the experiments with the increased B_{tor} and I_p agrees well with the results of numerical modeling. Modeling for the conditions of Globus-M2 plasma with $B_{\text{tor}} = 1$ T, $I_p = 500$ kA and additional 1 MW 50 keV neutron beam predicts more than two orders neutron yield increase.

References: