A High Resolution Neutron Spectrometer system for ITER Conceptual design

G. Ericsson¹, A. Hjalmarsson¹, E. Andersson-Sundén¹, S. Conroy¹, K. Drozdowicz², J. Eriksson¹, L. Giacomelli³, L. Hajduk², C. Hellesen¹, A. Igielski², A. Kurowski², B. Marcinkevicius¹, G. Mazzone⁴, M. Scholz², M. Tardocchi³, G. Tracz², U. Woznicka² and B. Brichard⁵.

¹Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
²Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland.
³Istituto di Fisica del Plasma "P. Caldirola", Consiglio Nazionale delle Ricerche, Milano, Italy.
⁴ENEA C. R. Frascati Dipartimento FSN, Frascati, Italy.
⁵Fusion for Energy, Barcelona, Spain.

The High Resolution Neutron Spectrometer (HRNS) system for ITER is composed of a suite of neutron spectrometers with the primary function to provide measurements of the fuel ion ratio, nT/nD, in the plasma core. Supplementary functions are to assist or provide information on fuel ion temperature, T_i, energy distributions of fuel ions and confined α-particles and neutron emission profiles. The ITER requirement for the HRNS primary function is to obtain nT/nD with 20% uncertainty and a time resolution of 100 ms for DT plasmas.

We present a conceptual HRNS system design and its measurement performance for nT/nD. The HRNS system in this study is based on established instrumental techniques, such as thin-foil proton recoil, diamond and time-of-flight. The performance is assessed using simplified, yet realistic, response functions for the individual spectrometers used in the system. The main interfacing requirements for the HRNS is a 10 cm diameter aperture in the ITER first wall, tapered collimation resulting in a neutron flux in the order of 10⁹ n/cm²/s on an area of 10 cm² at a distance of 16 m from the first wall.

For optimum use of the available neutron flux, the system is divided into two sections; “low efficiency” neutron spectrometers in the front and “high efficiency” in the rear. It is also investigated to use an adjustable collimator between the front and rear spectrometers in order to enhance the dynamic range and overlap of the “low efficiency” and “high efficiency” systems.

For the combination of neutron spectrometers presented here, it is shown that the system fulfills the ITER requirement, on nT/nD, over an order of magnitude in fusion power, 50 < P_fus < 500 MW. In the performance study, contributions due to neutron scattering in the vessel walls, collimator and beam dump are included together with a neutron induced gamma background.

Acknowledgments: The work presented here has been partially funded by Fusion for Energy under the Contract F4E-GRT-403. This publication reflects the views only of the author, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein. This work was also supported by the Swedish Research Council (Vetenskapsrådet) grant VR 621-2012-4942.