Nonlinear wave-particle dynamics in chorus excitation

Fulvio Zonca1,2, Xin Tao3,4 and Liu Chen2,5

1ENEA, Fusion and Nuclear Safety Department, C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma), Italy

2IFTS and Department of Physics, Zhejiang University, Hangzhou, 310027 P.R. China

3Department of Geophysics and Planetary Sciences, USTC, Hefei, P.R. China

4Collaborative Innovation Center of Astronautical Science and Technology, P.R. China

5Dept. of Physics and Astronomy, University of California, Irvine CA 92697-4575, U.S.A.

Nonlinear wave particle interaction during chorus wave generation has been recently shown to be a non-adiabatic process; that is, the wave-particle trapping time in the resonant phase-space structures, τ_{tr}, is typically of the same order as the characteristic nonlinear time scale τ_{NL} [1,2]. These results shed new light on the physical processes underlying wave-particle resonance and nonlinear mode evolution with respect to previous analyses assuming $\tau_{NL} \gg \tau_{tr}$. In this work, we present an analytical study of nonlinear evolution of phase-phase space structures in support of our earlier numerical simulation results [1,2].

We adopt a non-perturbative description [3] of the phase-space structures due to the interaction of supra-thermal electrons with the fluctuating fields produced by a quasi-periodic chorus wave. This allows us to derive the renormalized expression of supra-thermal electron distribution function in the form of a Dyson-like equation [3], which illuminates the self-consistent nonlinear evolution of resonance structures in the phase-space. In particular, we demonstrate that frequency sweeping of chorus fluctuations occurs as consequence of maximization of wave-particle power transfer; and discuss the consequence of this on the spatiotemporal features of the fluctuation spectrum.

References

