Nonlinear electromagnetic stabilization of ITG microturbulence by ICRF-driven fast ions in ASDEX Upgrade

F.N. de Oliveira, H. Doerk, M.J. Mantsinen, C. Angioni, R. Bilato, M. Dunne, D. Gallart, A. Gutiérrez-Milla, P. Mantica, T. Odstrčil, G. Tardini, X. Sáez, the ASDEX Upgrade Team and the EUROfusion MST1 Team

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
2 Max-Planck-Institut für Plasmaphysik, Garching, Germany
3 ICREA, Barcelona, Spain
4 Istituto di Fisica del Plasma “P. Caldirola”, CNR, Milano, Italy

* see the author list of H. Meyer et al., to be published in Nuclear Fusion Special issue: Overview and Summary Reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016)

3He minority heating is one of the ICRF heating schemes foreseen for ITER. Experiments with this scheme were recently carried out on the ASDEX Upgrade (AUG) tokamak [1]. By adding 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance to 4.5 MW of deuterium NBI, the radial gradient of the T_i profile reached locally values up to 50 keV/m and the normalized logarithmic ion temperature gradients R/L_T of about 20, which is unusually large for AUG. Changes in T_i profiles were accompanied by an increase in the toroidal rotation, thought to be associated with microturbulence stabilization similar to radially-sheared toroidal rotation stabilization. Our linear simulations performed with the GENE code [2] demonstrate that the observed large core ion temperature gradient could be explained in terms of fast ions stabilization [3]. In particular, we find that the addition of fast ions generates a reduction in the ITG linear growth rate and decreases the beta threshold of the hybrid Kinetic Ballooning Mode and Beta Alfven Eigenmode (KBM/BAE). In this paper we deepen our analysis by separating the impacts of the electromagnetic and fast-ion effects on stabilizing the ITG turbulence, following the methodology in [4] [5]. Our final aim is to carry out nonlinear simulations in a KBM stable regime, to allow a comparison of the simulated and experimental ion and electron energy fluxes.

References