Toroidal Electromagnetic Particle-in-Cell Code with Gyro-kinetic Electron and Fully-kinetic ion

Jingbo Lin3,1, Wenlu Zhang1,2*, Pengfei Liu3,1, Ding Li1,3

1Institute of Physics, Chinese Academy of Science, Beijing 100190, China
2University of California, Irvine, California 92697, US
3University of Science and Technology of China, Hefei, Anhui 230026, China

A Particle-in-Cell toroidal simulation code is implemented, with a newly developed kinetic model adopting fully-kinetic ion and gyro-kinetic electron. In this simulation model, electron’s fast gyro motion is systematically removed using Lie-transform perturbation theory. This code is developed in general magnetic flux coordinate and field-line coordinate, which is suitable for simulations of toroidally confined plasma. Two core components – single particle pushing and field solver are successfully verified. Integrated ElectroStatic benchmark with lower-hybrid wave (LHW) and ion Bernstein wave (IBW) matches well with theoretical estimation. This code can be a first-principal tool to investigate high frequency nonlinear phenomenon, such as parametric decay instability (PDI), during lower-hybrid current drive (LHCD) and ion cyclotron radio frequency heating (ICRF) with complex geometry effect included.