Numerical studies of plasmoids during the nonlinear evolution of double tearing modes

W. Guo1,2, J. Ma1,2, Z. Yu1,2, Q. Yu3

1 Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui, China
2 Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei, Anhui, China
3 Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany

Email: wfguo@ipp.ac.cn

Double tearing mode (DTM) is an important kind of magnetohydrodynamics (MHD) instability that often occurs with reversed central magnetic shear configuration in tokamak discharges. A nonlinear MHD code based on a conservative perturbed MHD model by splitting primary variables in original MHD equations into equilibrium part and perturbed part has been developed. The nonlinear evolution of double tearing mode in 2D geometry is numerically investigated in high Lundquist number regime. The onset of the secondary and tertiary islands (plasmoids) due to the tearing unstable current sheets formed during the fast reconnection phase and a new nonlinear evolution process characterized by two fast reconnection phase are investigated and discovered. More effects, including the flow, guiding field, viscosity etc. are under way. The details will be presented.

Plasmoids during the nonlinear evolution of DTM in high Lundquist number regime: (a) Multiple (five) secondary islands formation in nonlinear evolution of double tearing mode with equilibrium current sheets distance $y_0 = 0.22$, (b) A typical picture of a new quasi-stationary characterized as two pairs of coexisting islands with well preserved symmetry.

*This work is supported by the National Natural Science Foundation of China under Grant No. 11475219, the Science Foundation of the Institute of Plasma Physics, Chinese Academy of Sciences (DSJJ-15-JC02), and the National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB111002.