Divertors are required for handling the plasma particle and heat exhausts on the walls in fusion plasmas. Relatively simple methods are developed to study the plasma loss time and the interception pattern of the escaping plasma in divertor tokamaks using the field line Hamiltonian. The effects of the nonideal spiraling on the loss time and size of the footprint are studied. The DIII-D tokamak is chosen for the study. The complicated shape of the magnetic surfaces in the DIII-D is analytically represented by the equilibrium generating function. The surface that intercepts the escaping plasma is a plane orthogonal to the line from O-point to the X-point. The magnetic perturbation has mode numbers \((m,n) = (3,1) + (4,1)\). The resonant perturbation produces islands and stochastic regions. The plasma particles start on the last good surface and on a good surface roughly midway between the last good surface and magnetic axis. Scaling of the loss time and the size of the footprint with the nonideal spiraling effects are estimated. This work is supported by the US DOE grants DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and DE-FG02-95ER54333 to Columbia University. This research used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-05CH11231.