Understanding Filaments in Laser Plasmas


1Department of Physics, Indian Institute of Technology Hyderabad, India.
2Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore, India.
3Institute for Radiation Physik, Helmholtz Zentrum Dresden Rossendorf, Germany

*E-mail: bhuvan@iith.ac.in

Abstract

The acceleration of high energy ion beams up to several tens of MeV per nucleon following the interaction of an ultra-short (t < 50 fs), intense (Iλ^2 > 10^{18} W.cm^{-2}.μm^{-2}) laser pulse with solid targets, is one of the burgeoning fields of research in the last few years. Mechanisms leading to forward-accelerated, high quality ion beams, operating at currently accessible laser intensities (up to 10^{21} W/cm2) in laser-matter interactions, are mainly associated with large electric fields set up at the target rear interface by the laser-accelerated electrons leaving the target. The emitted ion pulses, and in particular, the proton pulses contain a large number of particles (up to 10^{13}) with energies in excess of several MeV, having a pulse duration ~ ps, and a source size of tens to hundreds of μm [1-2]. Conversion efficiencies (laser energy to proton energy) up to 7 percent have been reported [3]. However, the emitted proton beam has a large divergence with filamentary structures, which restricts its applications [4-5].

In this paper, we present our recent experimental results on MeV ion generation by relativistic (10^{19} W/cm^2) short-pulse (45 fs) laser interaction with foil targets of varying thicknesses, structured / uniform targets (e.g. nano structures on thin metallic foils, sandwich targets). Controlling the filamentary structures and instabilities in plasmas will be discussed in this paper.

References: