Recent progress on laser plasma accelerator and platform laser system for multi staging laser electron accelerator on the ImPACT project at Osaka University

H. Nakamura1, T. Otsuka2, J. Ogino2, S. Masuda2, N. C. Pathak2, Z. Jin2, K. Sueda2, 4, A. G. Zhidkov2, N. Nakanii3, M. Mori3, H. Kotaki3, M. Kando3, T. Hosokai1, 2 and R. Kodama1, 2, 4

1 Graduate school of Engineering, Osaka University, Suita, Osaka, Japan
2 Photon Pioneers Center, Osaka University, Suita, Osaka, Japan
3 Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto
4 Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan

Since laser wakefield acceleration (LWFA) has a potential to produce high-quality ultrafast electron beam, it is considered as an electron source of a compact X-ray free electron laser (XFEL). The application requires high-beam quality such as low divergence, narrow energy spread, short pulse and stability.

We are proceeding to demonstrate staging of laser-plasma accelerators on IMPACT project at Osaka University. Staging laser electron acceleration experiments are being prepared to demonstrate a stable, more than one GeV electron beam with small energy spread (1%) and high peak current, aiming an XFEL around one keV.

We are constructing new laser system for the staging laser accelerator. The system consists of three laser pulses: (1) 1 J, 20 fs for injector, (2) 2 J, 50 fs for phase rotator, and (3) 10 J, 100 fs for booster. The detail of the progress on the construction of the laser system will be presented.

This work was supported by (1) Impulsing Paradigm Change through Disruptive Technologies Program on Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) and (2) Core-to-Core program on Japan Society for the Promotion of Science.