Understanding the electron heat transport in tokamaks is necessary to predict the performance of future fusion reactors. In this contribution, the inward propagation of the electron temperature perturbations induced by the ELMs is studied, using ECE measurements. A characterisation of the ELM-induced dynamics of the inner region (e.g. $0.6 < \rho_p < 0.95$, where ρ_p is the normalized poloidal radius) can reveal some features of the electron heat transport, and complement the understanding of the inter-ELM pedestal evolution. The penetration of ELM-induced cold pulses (quantified by the radial length of decorrelation), subsequent to the initial electron temperature crash, is analysed in a database of ASDEX Upgrade H-mode plasmas. Plasmas parameters are in the range $I_p=0.6$ - 1.15MA, $q_{95}=3.5$ - 7.6, $B_t=2.45$ - 2.68T, triangularity = 0.21 - 0.40, and electron density at $\rho_p=0.8$ in the interval 3.5 - 7.3×10^{19}m$^{-3}$. The influence of various parameters is tested. In particular, it is found that the safety factor, and the plasma shape are important parameters. For low triangularity plasmas, time-delay analysis detects a slowing down of the ELM-induced cold pulses associated with their attenuation in the region $\rho_p \approx 0.7$ - 0.8. This could be the footprint of local changes in electron heat transport.

* See the author list of “Overview of progress in European Medium Sized Tokamaks towards an integrated plasma-edge/wall solution” by H. Meyer et al., to be published in Nuclear Fusion Special issue: Overview and Summary Reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016)