Low temperature plasma interactions with in-flight liquid microdroplets

PD Maguire1, D Rutherford1, H McQuaid1, D Diver2, D Mariotti1

1NIBEC, University of Ulster, Belfast, Ireland
2School of Physics & Astronomy, University of Glasgow, Glasgow, Scotland

Transport of micron-sized liquid droplets through a low temperature RF plasma1 at atmospheric pressure has demonstrated a number of remarkable and unexpected effects. After a short flight time, \(\sim 120 \mu s \), there is evidence that chemical reactions induced by the plasma and gas flux proceed at a rate that is significantly faster that observed in plasma – bulk liquid studies and many orders of magnitude faster than in standard bulk chemistry2. Current theories of microparticle charging in a collisional environment is limited. While in-flight charge measurements represent a significant challenge, the relatively large size of the droplet (10 – 20 \(\mu m \) diameter) and the limited evaporation over the flight time, offer the prospect of using droplets as a spherical probe to develop enhanced collisional probe theories in the regime where the particle size is greater than Debye lengths or mean free paths. In-flight measurements indicate a minimum net charge of \(10^5 \) electrons, considerably higher than that obtained by other charging methods. We report pulse charge measurements using a dual concentric micro-ring probe and compare results with numerical simulation.

There exists a large potential to develop new plasma-liquid processes for medical, chemical, biological, environmental and materials applications, among others and we can highlight some unique features of the plasma – microdroplet system that may provide opportunities for exploitation, namely: (i) a controlled ambient environment, (ii) a large surface area to volume ratio, (iii) small volume, (iv) low droplet temperature, (v) in-flight chemical synthesis and encapsulation, (iv) remote delivery. The droplet system also offers new possibilities for studying complex kinetic interactions between plasma species and a defined liquid surface with limited momentum transfer. We will report both experimental measurements and simulations of plasma-induced droplet chemistry and highlight the impact of specific species, namely solvated electrons and OH* radicals on living bacterial cells carried in the droplet.

1PD Maguire et al. Appl. Phys. Lett. 106, 224101 (2015); \url{http://dx.doi.org/10.1063/1.4922034}
2PD Maguire et al. Nano Lett., \url{http://dx.doi.org/10.1021/acs.nanolett.6b03440}
Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1)