Role of electric field curvature in the formation of edge transport barrier

K. Kamiya1, K. Itoh2, S.-I. Itoh3,4

1National Institutes for Quantum and Radiological Science and Technology, Naka, Japan.
2National Institute for Fusion Science, Toki, Japan.
3Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan.
4Research Center for Plasma Turbulence, Kyushu University, Kasuga, Japan.

The role of radial electric field curvature (i.e. 2nd derivative of the radial electric field, E_r) has been examined experimentally, in the formation of the edge transport barriers (ETBs) during/across the L-H transition of JT-60U plasmas with high-resolution CXRS measurements \cite{1}. For this aim, theoretical formula has been proposed for experimental validation \cite{2}, taking into account for the normalized turbulence intensity, I/I_0, in the presence of non-uniformity E_r-effects for both its shear and curvature (as expressed by the parameter of Z) as follows;\begin{equation}
\frac{I}{I_0} = 1/\{1 + (k\rho_i)^{-2}Z\}, \quad (1)
\end{equation}
\begin{equation}
Z \equiv \left(\frac{\rho_i}{(V_d\theta)}\right)^2 \left(E_r'E_r' - E_r*E_r^*\right) \equiv Z_1 + Z_2. \quad (2)
\end{equation}

Here, k is a typical wavenumber for the plasma turbulence, ρ_i is the ion gyro-radius, V_d is the diamagnetic velocity, B is total magnetic field), and E_r^* is the modified radial electric field subtracting the toroidal rotation component.

We found the decisive importance of E_r-curvature on the ETBs formation at which the normalized ion temperature gradient, $L_{T_i}^{-1} \equiv -\nabla T_i/T_i$, has a local peak value in the pedestal region. On the other hand, the role of the E_r-shear was newly understood as for the expansion of pedestal width, compensating an unfavorable effect of the E_r-curvature having its sign dependence on the transport reduction/enhancement, being expected by a theoretical model as $L_{T_i}^{-1} \propto Z^{0.5}$.

Based on these rapid progresses, the essential role of E_r-curvature is confirmed unambiguously, for the first time. These findings would shed more light on reviewing the paradigm of ExB flow shear suppression of the turbulence, being thus expected to make a valuable contribution to a better prediction of the pedestal width/height in the future devices.

References
\begin{itemize}
\item \cite{1} K. Kamiya, K. Itoh, and S.-I. Itoh, Sci. Rep. 6, 30585 (2016).
\end{itemize}