Properties of the MHD force operator in the presence of a resistive wall

A.A. Galyuzov and V.D. Pustovitov

Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
National Research Center “Kurchatov Institute”, Moscow, Russia

1. Introduction. It is known [1-4] that in the ideal magnetohydrodynamics (MHD) the normal modes are either purely oscillating or purely growing/damped due to the self-adjointness of the ideal MHD force operator. This fact was proved in [1-4] for the plasma surrounded by an ideally conducting wall. Our aim is to investigate the properties of this operator in the presence of a resistive wall, so that the boundary conditions will be the main factor affecting the result. We do it by following the method described in [4], but now with the energy dissipation in the resistive wall which is the main difference of our work from [4].

2. Derivations. A static (with mass velocity \(V_0 = 0 \)) toroidal magnetically confined ideally conducting plasma (its volume is denoted as “\(pl \)”) surrounded at some distance with a resistive wall (with its inner surface “wall-”) is considered. There is a vacuum gap (“\(gap \)”) between the plasma and the wall.

We start from the equation of energy transfer in ideal (no energy dissipation) MHD (for example, equation (5.39) in [3])

\[
\frac{\partial}{\partial t} \left(\frac{\rho V^2}{2} + \frac{p}{\Gamma-1} + \frac{B^2}{2} \right) + \nabla \cdot \left(\frac{\rho V^2 V}{2} + \frac{\Gamma}{\Gamma-1} pV + E \times B \right) = 0, \tag{1}
\]

where \(\rho \) is the plasma density, \(V \) is its mass velocity, \(B(E) \) is the magnetic (electric) field, \(p \) is the plasma pressure, \(j = \nabla \times B \) is the current density, \(\Gamma \) is the ratio of specific heats.

Integration of (1) over the volume enclosed by the toroidal wall yields

\[
\frac{\partial E}{\partial t} = - \oint_{\text{wall}} E \times B \cdot dS, \quad \text{where} \tag{2}
\]

\[
E = \int_{pl+gap} u dV \quad \text{with} \quad u = \frac{\rho V^2}{2} + \frac{p}{\Gamma-1} + \frac{B^2}{2}. \tag{3}
\]

Consider small displacements \(\xi(r_0, t) = r - r_0 \) of the plasma from its equilibrium position \(r_0 \). Then the perturbation of the full energy \(\delta E = E(r_0 + \xi) - E(r_0) \) may be expanded to the second order in \(\xi \) and \(\dot{\xi} \) (hereinafter \(\dot{f} \equiv \frac{\partial f}{\partial t} \)) and be presented as

\[
\delta E(\xi, \dot{\xi}) = K(\dot{\xi}, \dot{\xi}) + M(\ddot{\xi}, \dot{\xi}) + \delta W(\xi, \dot{\xi}), \tag{4}
\]

where

\[
K(\dot{\xi}, \dot{\xi}) = \frac{1}{2} \int_{pl} \rho_0 \dot{\xi}^2 dV, \tag{5}
\]

\[
M(\ddot{\xi}, \dot{\xi}) = \int_{pl} \rho_0 \dot{\xi} \dot{\xi} \ddot{\xi} dV, \tag{6}
\]

\[
\delta W(\xi, \dot{\xi}) = \int_{pl+gap} \left(\frac{\rho V^2}{2} + \frac{p}{\Gamma-1} + \frac{B^2}{2} \right) \xi dV. \tag{7}
\]
\(\delta W(\xi, \hat{\xi}) \) is a functional quadratic in \(\xi \), \(M(\xi, \hat{\xi}) \) is a functional bilinear in \(\xi, \hat{\xi} \), and \(b \) is the perturbation of the magnetic field (the magnetic energy \(0.5 \int_{\text{gap}} b^2 dV \) is included in \(\delta W(\xi, \hat{\xi}) \)).

The terms linear in \(\hat{\xi} \) do not appear in (4) because \(\nabla E(\mathbf{r}_p) = 0 \) in equilibrium.

According to (2) a relation is valid

\[
\frac{\partial}{\partial t} \delta E(\xi, \hat{\xi}) = -F_w^{-}, \quad \text{where} \quad F_w^{-} = \int_{\text{wall-}} (\mathbf{E}_i \times b) \cdot d\mathbf{S}_w^{-}
\]

(6)

and \(\mathbf{E}_i \) is the electric field perturbation. In the standard stability theory with an ideal wall, \(\mathbf{n}_w \times \mathbf{E}_i = 0 \) and \(F_w^{-} = 0 \) (\(\mathbf{n}_w \) is the unit normal to the inner surface of the wall). We assume the wall resistive. Then \(F_w^{-} \neq 0 \), depending on \(\mathbf{E}_i \) and \(b \) at the wall. These quantities are related to \(\mathbf{E}_i = -\hat{\xi} \times \mathbf{B}_0 \) and \(b = \nabla \times [\hat{\xi} \times \mathbf{B}_0] \) in the plasma through the boundary conditions at the plasma surface: \(\mathbf{n}_{pl} \times \mathbf{E}_i = - (\mathbf{n}_{pl} \cdot \hat{\xi}) \mathbf{B}_0 \) and \(\mathbf{n}_{pl} \cdot (\mathbf{b}_{gap} - \mathbf{b}_{pl}) = 0 \). This coupling has a consequence that \(b = 0 \) everywhere at \(\xi = 0 \), but, maybe, \(\mathbf{b} \neq 0 \), if \(\hat{\xi} \neq 0 \) at this moment. When \(\hat{\xi} = 0 \), we have \(\mathbf{E}_i = 0 \), though, maybe, \(b \neq 0 \). This, in particular, means that \(F_w^{-} = 0 \) at either \(\xi = 0 \) or \(\hat{\xi} = 0 \). We use this property below.

With the usage of (5), the left-hand side of the energy balance (6) can be written in the extended form as

\[
2K(\hat{\xi}, \hat{\xi}) + M(\xi, \hat{\xi}) + M(\hat{\xi}, \hat{\xi}) + \delta W(\xi, \hat{\xi}) + \delta W(\hat{\xi}, \hat{\xi})
\]

(7)

As explained above, it must be zero at either \(\xi = 0 \) or \(\hat{\xi} = 0 \). Therefore, \(M(\hat{\xi}, \hat{\xi}) = M(\xi, \hat{\xi}) = 0 \).

The logic of the proof is the same as in [4], and the presence of \(F_w^{-} \) in (6) does not spoil it. Let us add that \(\xi \) and \(\hat{\xi} \) are related by

\[
\rho_0 \hat{\xi} = F_s(\xi),
\]

(8)

the standard equation of small oscillations that nullifies the first-order variation of (1).

Then relation (6) reduces to

\[
2K(\hat{\xi}, F_s(\xi)/\rho_0) + \delta W(\xi, \hat{\xi}) + \delta W(\hat{\xi}, \hat{\xi}) = \int_{\text{wall-}} (\hat{\mathbf{A}} \times \nabla \times \mathbf{A}) \cdot d\mathbf{S}_w^{-},
\]

(9)

where we introduced the vector-potential by \(\mathbf{E}_i = -\hat{\mathbf{A}} \) so that \(b = \nabla \times \mathbf{A} \).

The combination \(\delta W(\xi, \hat{\xi}) + \delta W(\hat{\xi}, \hat{\xi}) \) in (9) is invariant with respect to the replacement of the arguments \(\xi \) and \(\hat{\xi} \), and, accordingly, \(\mathbf{A} \) and \(\hat{\mathbf{A}} \). Therefore,

\[
2K(\hat{\xi}, F_s(\xi)/\rho_0) - 2K(\xi, F_s(\xi)/\rho_0) = \int_{\text{wall-}} [\hat{\mathbf{A}} \times \nabla \times \mathbf{A} - \mathbf{A} \times \nabla \times \hat{\mathbf{A}}] \cdot d\mathbf{S}_w^{-},
\]

or

\[
\int_{pl} \hat{\xi} \cdot \mathbf{F}_s(dV) - \int_{pl} \xi \cdot \mathbf{F}_s(dV) = \int_{\text{wall-}} (\hat{\mathbf{A}} \times \nabla \times \mathbf{A} - \mathbf{A} \times \nabla \times \hat{\mathbf{A}}) \cdot d\mathbf{S}_w^{-},
\]

(10)
where we have used the consequence of (5) and (8):

\[2K(\eta, F_s(\xi)/\rho_0) = \int_{pl} \eta \cdot F_s(\xi) dV. \]

The equality (10) consists of 2 functionals bilinear in \(\xi, \hat{\xi} \) and \(A, \hat{A} \). Thus we may substitute the pair \(\xi, \hat{\xi} \) in (10) for any arbitrary vector fields \(\eta(r,t) \) and \(Q(r,t) \), belonging to the same vector space as \(\xi(r,t) \) with \(A(r,t) \). As a result, we will have

\[\int_{pl} \eta \cdot F_s(\xi) dV - \int_{pl} \hat{\xi} \cdot F_s(\eta) dV = \int_{wall} (Q \times \nabla \times A - A \times \nabla \times Q) \cdot dS. \quad (11) \]

It can be derived directly from relations (8.43)-(8.44) of [3] setting there \(n \times A \neq 0, n \times Q \neq 0 \). If the wall is ideally conducting, i.e. \(n \times A = 0, n \times Q = 0 \), the right-hand side of (11) is zero. Then (11) gives a conventional result [1-4] – self-adjointness of \(F_s \).

For a resistive wall with \(j_i = \sigma E_i \), equation (11) can be transformed in (\(\sigma \) is the conductivity of the wall)

\[\int_{pl} \eta \cdot F_s(\xi) dV - \int_{pl} \hat{\xi} \cdot F_s(\eta) dV = \int_{wall} \sigma[(Q \cdot A) - (A \cdot Q)] dV = 0. \quad (12) \]

We can introduce a complex displacement and vector-potential by \(\xi = \xi_R + i\xi_I, A = A_R + iA_I \), and the same for \(\eta \) and \(Q \). We demand that the real and imaginary parts of these complex functions belong to the same vector space as \(\xi \) and \(A \). Substitution of such complex functions in (12) does not violate this equality. This means that (11) and, consequently, (12) are valid for complex vector-functions.

Now, substituting in (12) complex vectors \(\eta = \xi^*, Q = A^* \) with * denoting complex conjugation and assuming the time dependence \(\propto \exp(\gamma t) \) with \(\gamma = \gamma_R + i\gamma_I \), we obtain

\[\int_{pl} \xi \cdot F_s(\xi) dV - \int_{pl} \hat{\xi} \cdot F_s(\hat{\xi}) dV = -2i\gamma_I \int_{wall} |A|^2 dV. \quad (13) \]

Now let us assume that \(\gamma_I \neq 0 \). \quad (14)

Then it follows for \(\xi \propto \exp(\gamma t) \) from (8) that

\[\int_{pl} \xi \cdot F_s(\xi) dV - \int_{pl} \hat{\xi} \cdot F_s(\hat{\xi}) dV = 4i\gamma_R \int_{pl} \rho_0 |\xi|^2 dV. \]

This relation along with (13) gives

\[\gamma_R = -\frac{1}{2} \int_{wall} \sigma |A|^2 dV / \int_{pl} \rho_0 |\xi|^2 dV < 0. \quad (15) \]

This result (“a static ideal toroidal magnetically confined plasma surrounded by a resistive wall is always stabilized”) is absolutely unrealistic. Moreover, for an ideally conducting wall the right hand side of (15) gives a wrong result \(\gamma_R = 0 \) instead of \(\gamma_R \gamma_I = 0 \) [1-3]. It proves that our assumption (14) was wrong and \(\gamma_I = 0 \) for an ideal toroidal plasma surrounded by a resistive wall.
Now it is clear that
\[
\int_{pl} \eta \cdot \mathbf{F}_s(\xi) dV - \int_{pl} \xi \cdot \mathbf{F}_s(\eta) dV = 0, \tag{16}
\]
when \(\mathbf{n}_w \times \mathbf{E}_i \neq \mathbf{0} \) and \(\xi, \eta \propto \exp(\gamma t), \cos((k \cdot r) - \omega t), \sin((k \cdot r) - \omega t) \)
\(\tag{17} \)
It can be also obtained that the growth rate must satisfy the quadratic equation [5]
\[
\gamma^2 \int_{pl} \rho_0 \| \mathbf{A} \|^2 dV + \gamma R \int_{wall} \sigma |\mathbf{A}|^2 dV + C = 0, \text{ where } C \text{ is real.}
\]
A small displacement of the perturbed plasma from its equilibrium trajectory in the presence of its equilibrium rotation with a mass velocity \(\mathbf{V}_0 \) is described by the Frieman-Rotenberg equation [6, 7]
\[
\rho_0 \frac{d^2 \xi}{dt^2} = \mathbf{F}_s(\xi) + \nabla \cdot (\xi \rho_0(\mathbf{V}_0 \cdot \nabla) \mathbf{V}_0) = \mathbf{F}(\xi),
\]
where \(\frac{d}{dt} = \frac{\partial}{\partial t} + (\mathbf{V}_0 \cdot \nabla) \), \(\mathbf{F}_s(\xi) \) is a volume force density without and \(\mathbf{F}(\xi) \) - with the plasma equilibrium rotation. It is easy to check that an equation
\[
\int_{\mathcal{V}_s} \eta \cdot \mathbf{F}(\xi) dV - \int_{\mathcal{V}_s} \xi \cdot \mathbf{F}(\eta) dV = \int_{\mathcal{V}_s} \{ \eta \cdot \nabla \cdot (\xi \rho_0(\mathbf{V}_0 \cdot \nabla) \mathbf{V}_0) - \xi \cdot \nabla \cdot (\eta \rho_0(\mathbf{V}_0 \cdot \nabla) \mathbf{V}_0) \} dV \neq 0
\]
is valid \((\eta \neq \xi) \) for the perturbation time dependencies listed in (17). This means that equilibrium plasma rotation brings non-self-adjointness into the force operator.

3. Conclusion. It has been proved that the force operator of an ideal plasma surrounded by a resistive wall and displaced from its position of static equilibrium is self-adjoint for most commonly used perturbation time dependencies (17). In a general case, this property of the force operator of a static plasma is determined only by how the perturbation varies in time. The plasma equilibrium rotation that makes the force operator of an ideal plasma explicitly non-self-adjoint is needed to make \(\gamma \) (real for a plasma with \(\mathbf{V}_0 = \mathbf{0} \)) complex.