Toward realization of electron-positron plasmas in the lab:
Project overview, positron beam experiments, and linear traps

E. V. Stenson1, U. Hergenhahn1, H. Niemann1,4, N. Paschkowski1, H. Saitoh1,6, J. Stanja1, T. Sunn Pedersen1,4, M. R. Stoneking2, C. Piochacz3, C. Hugenschmidt3, L. Schweikhard4, J. R. Danielson5, C. M. Surko5

1 Max Planck Institute for Plasma Physics, Greifswald & Garching, Germany
2 Lawrence University, Appleton, WI, U.S.A.
3 Technische Universität München, Garching, Germany
4 Ernst-Moritz-Arndt University, Greifswald, Germany
5 University of California, San Diego, La Jolla, CA, U.S.A.
6 The University of Tokyo, Kashiwa, Japan

Electron-positron pair plasmas have long been predicted to exhibit a variety of unique properties in comparison to standard electron-ion plasmas. Only recently, though, have developments in non-neutral plasma physics and in the quality and strength of positron sources brought the goal of laboratory electron-positron pair plasmas within reach. In pursuit of this goal, there exist several interrelated challenges: availability of sufficient positrons, development of the device in which the pair plasma will be confined, and transfer of the positrons into the device. To address these challenges, the APEX/PAX (A Positron Electron eXperiment/Positron Accumulation eXperiment) collaboration is working on a number of projects in parallel, including:

- The positrons for the pair plasma will come from the NEutron-inducted POsitron source MUniCh (NEPOMUC). The energy spread and spatial profile of the beam are important for developing efficient injection schemes; measurements of these have been conducted for several different beam energies.

- The positrons from NEPOMUC are to be trapped and accumulated in PAX, composed of a series of linear, non-neutral plasma traps employing buffer and cooling gases and ultra-high-vacuum multi-cell storage. Early developmental work includes electron trapping experiments in the high-field magnet to be used for the project and positron experiments using a neon-moderated Na-22 source.

- Depending on the parallel energy spread of the NEPOMUC beam, trapping efficiency in the buffer gas trap of PAX may be reduced. Proof-of-principle simulations show, however, that a beam with an initially large energy spread can be split into multiple smaller beams, each with a smaller energy spread than the original one.