Electron-Hole Instabilities in Cross-Field Plasma Wakes

I H Hutchinson, C B Haakonsen, C Zhou

Plasma Science and Fusion Center,
Massachusetts Institute of Technology,
Cambridge MA USA

Cross-field plasma flow past an object is key to the physics underlying Mach-probes, spacecraft charging, and the wakes of non-magnetic bodies: the solar-wind wake of the moon is a typical example. We demonstrate analytically[1, 2] and using PIC simulation[3] that the wake is unstable because of electron velocity-distribution (f_e) distortions. The magnetic field, here perpendicular to the wind velocity, defines the 1-D direction of particle dynamics. Small electron holes — non-linearly self-binding electron density deficits — are spawned by a localized unstable depression (the “dimple”) in $f_e(v)$ near the phase-space separatrix. See Fig. 1.

Most of the holes move rapidly out of the moon wake, along B. However, some remain near the potential energy ridge of the wake, and grow until they are large enough to disrupt the two ion-streams, well before the ions are themselves linearly unstable. This non-linear hole growth is caused by the same mechanism that causes the dimple: cross-field drift from a lower to a higher density. Quantitative hole growth curves are calculated by analytic theory. Related mechanisms cause plasma near magnetized Langmuir probes to be unsteady.

References