Adjustable x-rays irradiation source based on Laser Induced Vacuum Discharge

M. A. Alkhimova1, O.B. Ananin, E.D. Vovchenko, A. P. Melehov, I.K. Novikov, R.S. Ramakoti, A. S. Savelov
National research nuclear university «MEPHI»
(Moscow Engendering Physics Institute)
raiskiyAd@rambler.ru1

Introduction

It is well known that high-current vacuum sparks (HVS), with plasma produced due to electrode erosion, are sources of characteristic x-rays emission [1-2]. However, this type of discharge requires a high amount of energy stored in capacitor banks input for discharge ignition. But the pinching process is spatially and temporally unstable. Accordingly, it is complicated to apply the high-current vacuum spark as a source of X-rays emission in practice.

The moderated laser-induced plasma vacuum discharge is introduced as a portable source of X-ray emission and ions within this paper. Plasma jet formed under irradiating of target by a laser pulse, can be a stable source of X-rays emission which spectral composition determined by laser irradiation parameters and geometry of the discharge circuit [3].

Experimental Set-up and Results

The research was performed on a new facility called “Alligator” (fig.1). It consists of an interaction vacuum chamber (P = 10−5 torr), discharge system, 1.06 µm Nd-YAG laser with pulse energy e = 25 mJ and duration of τ = 15 ns, operating at the Q-switching mode and diagnostic tools. To measure a temporal distribution of x-rays two identical p-i-n photodiodes were used. Diodes were placed inside of vacuum chamber at a distance lpd = 18 mm from discharge perpendicular to the axis of the discharge. The input windows of diodes were covered by thin foils of 9 µm Al and 17 µm Mg to form a charge deduction spectral channel with energy interval of Еq = 1,3÷1,56 keV.

Fig.1 Schematic diagram of experimental facility “Alligator”
Discharge system consisted of electrodes, voltage source, storage capacitance \(C_1 = 0.22 \, \mu\text{F} \) (\(C_2 = 0.011 \, \mu\text{F} \)), and low inductance currents conductor. To increase the intensity of x-rays emission the conical configuration was applied [4]. Conical cathode was chosen as a high-voltage electrode, and anode with a tip diameter of 250 \(\mu\text{m} \) was a target-electrode where laser beam was focused. Electrodes were arranged at an angle (\(\alpha \sim 30^\circ \)) from each other to create the opportunity for simultaneous study of X-rays emission and ion flux (fig.2).

In the first series of experiments the discharge current was sustained with a capacitor of \(C_1 = 0,22 \, \mu\text{F} \) loaded up to \(-13\) kV. The level of energy input into the discharge reached \(E_1 \sim 17\) J and the magnitude of discharge current didn’t exceed a value \(I_1 = 10\) kA. The distance between electrodes was chosen as varied parameter, which affected spectral composition and magnitude of x-rays, created in plasma jet. The size of the electrode gap was changed from 2 mm to 7 mm with step \(\sim 1\) mm.

Analysis of the spectral composition of the x-rays was performed using a series of debilitating Al filters with the range of thickness \(h = 2\div120 \, \mu\text{m} \). The set of Al filters and X-rays film was placed at a distance \(l_f = 6\) cm from the radiation source inside protective shielding.

Figure 3(a) demonstrated that the widest range of energies and the highest intensity of X-rays emission was observed at a size of electrode gap \(d = 5\div6\) mm. Spectrum of X-rays was calculated by mathematical method of “effective energy” [5], (fig.3(b)).
In the second series the discharge current was sustained with a capacitor of \(C_2 = 0.011 \, \mu F \) (fig.4). The level of energy input into the discharge was decreased to the value of \(E_2 \approx 1 \, J \) and the magnitude of discharge current reached \(I_2 = 2 \, kA \). Other parameters were not changed. The most intense radiation was observed at an electrode gap of \(d = 2\pm3 \, mm \).

![Fig.4. a) X-ray attenuation curves for filters, b) Spectral composition of the X-ray source according to the distance between the electrodes.](image)

To obtain the spatial distribution of x-ray emission the automatic vacuum pinhole camera was applied. It located inside the vacuum vessel at the distant of 6 cm perpendicular to discharge axis. The aperture size was \(d_{ap} = 500 \, \mu m \). It was covered by thin Al foils \(h = 4\pm12 \, \mu m \) thickness. The images of the discharge gap were detected on the x-ray film Kodak (fig.5). It should be noted that bright images of plasma was obtained only for the thin Al filter \(h = 4 \, mm \).

![Fig.5. The pinhole images of the interelectrode gap, size \(d= 5mm, C_1= 0.22 \, \mu F, U= -13kV \) a) Al filter \(h=4 \, \mu m \), b) Al filter \(h=12 \, \mu m \)](image)

To control the temporal dependence of discharge current the Rogowsky coil was placed in the cathode circuit. The temporal characteristics of X-rays emission were measured by a system consisting of two pin-photodiodes that were covered by filters (fig.6).
Fig.6. The dynamics of the laser induced vacuum discharge

a) Pin-photodiodes signal, $C_1 = 0.22 \mu F$, $E_1 \sim 17 J$; b) Oscillogram of discharge current, $C_1 = 0.22 \mu F$, $E_1 \sim 17 J$; c) Pin-photodiodes signal, $C_2 = 0.011 \mu F$, $E_2 \sim 1 J$; d) Oscillogram of discharge current, $C_2 = 0.011 \mu F$, $E_2 \sim 1 J$.

It is shown that moment of emergency the discharge current oscillations correlated with a time when x-ray radiation has been emitted. The discharge current has damped oscillatory in the process of developing of plasma. It’s necessary to note that X-ray radiation was emitted in the initial stage of the discharge firing after $t \sim 300$ ns following laser initiation pulse. Duration of X-rays pulse was estimate $t_{xr} \sim 100$ ns and total energy of X-rays in pulse reached a value $D_1 \approx 0.4$ mJ (for $C_1 = 0$, $22 \mu F$, $E_1 \sim 17 J$) and $D_2 \approx 2 \mu J$ (for $C_2 = 0.011 \mu F$, $E_2 \sim 1 J$) in full solid angle.

CONCLUSION

The new kind of adjustable source of x-ray emission based on laser induced moderate power vacuum discharge with a range of quantum energy $h\nu = 1 \div 12$ keV was created. The possibility to adjust the X-ray spectral composition by changing the geometry of the electrode system was demonstrated. In the case of using stored energy $E_1 = 17 J$ the highest X-rays emission was observed when $d = 5$ mm and the spectral composition consisted essentially of hard component of radiation.

The intensity decreased monotonically with grows of energy from 1 to 12 keV. In the case of $E_2 = 1 J$ maximal intensity was obtained when $d = 2\div3$ mm.

LITERATURE

