Finite-aspect-ratio effects on neoclassical transport coefficients, revisited

M. Taguchi

College of Industrial Technology, Nihon University, Narashino, 275-8576, Japan

The neoclassical moment method is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. In this paper, we apply this improved method to the calculation of ion flow velocity for a plasma with one impurity species.

Let us write the perturbed distribution function as $f_{a1} = -(I_{\parallel}/\Omega_a)f_{a0} + g_a$ in an axisymmetric magnetic field $B = I(\psi)\nabla\phi + \nabla\psi \times \nabla\phi$, where $v_{\parallel} = B \cdot v/B$, Ω_a is the Larmor frequency, $2\pi\psi$ is the poloidal flux and ϕ is the toroidal angle. Then, in the banana regime, the function g_a for trapped particles ($\lambda > \lambda_c$) is identically zero, where $\lambda = (1 - v_{\parallel}^2/v^2)/B$ and $\lambda_c = 1/B_{\text{max}}$.

The analytic function g_a for passing particles ($\lambda < \lambda_c$) can be obtained from the solubility condition by using some sort of approximation to the linearized Fokker-Planck collision operator $C_{ab}(f_{a1}, f_{b1})$.

We introduce the following approximate collision operator:

$$
C_{ab}(f_{a1}, f_{b1}) \simeq v_D^{ab}(v)\mathcal{L}(f_{a1}) + \sum_{l=0}^{3} P_l(\xi)f_{a1}^l C_{ab}(f_{a1}, f_{b1}^l)
$$

with

$$
\hat{C}_{ab}(f_{a1}, f_{b1}^l) = C_{ab}(f_{a1}^l, f_{b1}^l) + \frac{l(l+1)}{2} v_D^{ab}(v) f_{a1}^l,
$$

where $f_{a1}^l = (l+1/2) \int_{-1}^{1} P_l(\xi) f_{a1} d\xi$, $C_{ab}(P_l(\xi) f_{a1}^l(v), P_l(\xi) f_{b1}^l(v)) = P_l(\xi) C_{ab}(f_{a1}^l(v), f_{b1}^l(v))$, $\xi = v_{\parallel}/v$, \mathcal{L} is the pitch-angle scattering operator, the deflection collision frequency $v_D^{ab}(v) = v_{ab}[\text{erf}(v/v_b) - G(v/v_b)](v_a/v)^3$ with $G(x) = [\text{erf}(x) - (2x/\sqrt{\pi})\exp(-x^2)]/(2x^2)$ and $v_{ab} = 4\pi n_b e_a e_b^2 \lambda/(m_a^2 v_a^3)$, thermal velocity $v_a = \sqrt{2T_a/m_a}$, and n_a and T_a are the number density and temperature, and m_a and e_a are the mass and charge. Using this approximate collision operator, we can obtain the distribution function for passing particles in the form

$$
g_a = \frac{1}{2} \frac{\sigma}{v_D^{ab}(v)} \int_{\lambda_c}^{\lambda_c} \frac{d\lambda}{\sqrt{1 - \lambda B}} G_{a1}(v) + \frac{5}{8} \frac{\sigma}{v_D^{ab}(v)} \int_{\lambda_c}^{\lambda_c} \frac{\lambda d\lambda}{\sqrt{1 - \lambda B}} G_{a2}(v),
$$

where $\sigma = v_{\parallel}/|v_{\parallel}|$, $v_D^{ab}(v) = \sum_b v_D^{ab}(v)$, $\langle \cdot \rangle$ denotes the flux-surface average,

$$
G_{a1} = \sum_b \left[\hat{C}_{ab}^{1}(K_{a1}^1, K_{b1}) + \hat{C}_{ab}^{3}(K_{a3}, K_{b3}) - C_{ab} \left(\frac{IB}{\Omega_a} f_{a0}^f, \frac{IB}{\Omega_b} f_{b0}^f \right) \right]
$$

and

$$
G_{a2} = \sum_b \left[\frac{7}{3} F_1 \hat{C}_{ab}^{3}(K_{a1}, K_{b1}) - \hat{C}_{ab}^{3}(K_{a3}, K_{b3}) \right]
$$
with \(F_t = 1 - \langle B^3 \rangle / \langle B^2 \rangle \langle B^4 \rangle \). The function \(K_{a1}(v) \equiv \langle B_{g_{a1}} \rangle \) is determined by the equation

\[
\frac{f_t}{f_c} v_{c}^{d} (v) K_{a1} - \sum_{b} C_{a1}^{1} (K_{a1}, K_{b1}) - \Delta t \sum_{b} C_{a1}^{3} (K_{a1}, K_{b1}) = - \sum_{b} C_{a1}^{1} \left(\frac{1B}{\Omega_{a} v f_{b0}^{0}}, \frac{1B}{\Omega_{b} v f_{b0}^{0}} \right)
\]

(6)

with

\[
\Delta t = \frac{7}{3} \left(f_t f_c + \bar{f}_t f_c \right),
\]

(7)

where \(f_t = 1 - f_c, \bar{f}_t = 1 - \bar{f}_c, \bar{f}_t = \bar{f}_t + f_t \bar{f}_c \).

The flow velocity is expressed in the form

\[
u_a = u_{a0} B - \frac{T_a}{m_a \Omega_a} \left(\frac{p_a}{p_0} + \frac{e_a \Phi^{\prime}}{T_a} \right) R^2 \nabla \varphi,
\]

(11)

where the poloidal flow \(u_{a0} \) is written in terms of the function \(K_{a1}(v) \) as \(u_{a0} = (4\pi/3n_a) \times (1/\langle B^2 \rangle) \int_0^\infty dv v^3 K_{a1} \).

We next explicitly calculate the poloidal flows of primary ions and impurities. Let us expand the function \(K_{a1}(v) \) in a series of the associate Laguerre polynomials of order 3/2 and retain only the first and second terms: \(K_{a1}(v) \approx (m_a/T_a) \langle B^2 \rangle v [u_{a0} - (2/5) q_{a0}/p_a (5/2 - v^2/v_a^2)] f_{a0} \), where \(p_a = n_a T_a \) and \(f_{a0} \) is the Maxwell distribution function. Inserting this expansion for \(K_{a1} \) into Eq.(6) and taking velocity moment with respect to \(v^3 \) and \(v^3 (5/2 - v^2/v_a^2) \) lead to a set of coupled algebraic equations for \(u_{a0} \) and \(q_{a0} \). From here, the subscripts \(i \) and \(I \) represent the primary and impurity ions. Assuming that the primary ions are in the banana regime and using the smallness of the mass ratio \(m_i/m_I \), we solve this coupled equations to find the poloidal flows \(u_{i0} \) and \(u_{I0} \):

\[
\begin{bmatrix}
 u_{i0} \\
 u_{I0}
\end{bmatrix}
= \frac{Ic T_i}{e_i \langle B^2 \rangle} \sum_{k=1}^{4} \begin{bmatrix} u_{ik} \\
 u_{Ik}
\end{bmatrix} A_k,
\]

(12)

where

\[
\begin{bmatrix}
 u_{i1} \\
 u_{i2} \\
 u_{i3} \\
 u_{i4}
\end{bmatrix}
= \frac{1}{D_i} \begin{bmatrix}
 \beta_1 s_1 \\
 \bar{\mu}_i s_2 - (3/2) \bar{\mu}_i s_1 \\
 \beta_1 s_3 \\
 -5\alpha \mu_2 \delta \delta T \beta_1 / D_i
\end{bmatrix},
\]

(13)
\[
\begin{bmatrix}
u_{I1} \\
u_{I2} \\
u_{I3} \\
u_{I4}
\end{bmatrix} = \frac{\delta}{D_iD_I} \left(\mu_{I3} + \sqrt{2 + \frac{15}{2} \delta} \right) \begin{bmatrix}
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5
\end{bmatrix} - \frac{\mu_{I2}}{D_I} \begin{bmatrix}
0 \\
0 \\
\sqrt{2 + 15 \delta/2} \\
5 \delta \delta_T
\end{bmatrix},
\]

(14)

and the thermal forces are defined by \(A_1 = p_i'/(p_i - (e_i/e_1)(T_i/T_r)(p_i'/p_I)), \ A_2 = T_i'/T_r, \ A_3 = (e_i/e_1)(T_i'/T_i), \ A_4 = (T_i/T_r)(e_i/e_1)(p_i'/p_I + e_i \Phi')/T_i \). The parameters in (13) and (14) are defined as \(\alpha = n_i e_i^2/(n_i e_i^2), \ \delta = (1/\alpha) \sqrt{m_i/m_i/(T_i/T_i)^{3/2}}, \ \delta_T = 1 - T_i/T_r, \ \beta_1 = \bar{\mu}_{i3} - s_2 + (3/2)(\bar{\mu}_{i2} - 3s_1/2), \ \beta_2 = (9s_1/4 + s_2)\bar{\mu}_{i1} + \bar{\mu}_{i2} - \bar{\mu}_{i1}\bar{\mu}_{i3}, \ \beta_3 = (3/2)(\bar{\mu}_{i1}\bar{\mu}_{i3} - \bar{\mu}_{i2}^2) + (9s_1/4 + s_2)\bar{\mu}_{i2}, \ \beta_4 = 9\bar{\mu}_{i1}/4 + 3\bar{\mu}_{i2} + \bar{\mu}_{i3} - 9s_1/4 - s_2, \ \beta_5 = -5(\alpha/D_i)\mu_{I2} \delta \delta_T \beta_4.

\[
D_i = (\bar{\mu}_{i1} + s_1)(\bar{\mu}_{i3} - s_2) - \left(\bar{\mu}_{i2} - \frac{3}{2} s_1 \right)^2,
\]

(15)

\[
D_I = (\mu_{I1} + \delta) \left(\mu_{I3} + \sqrt{2 + \frac{15}{2} \delta} \right) - \mu_{I2} (\mu_{I2} + 5 \delta \delta_T \delta),
\]

(16)

\[
s_1 = \frac{\alpha}{D_i} \left\{ \mu_{I1} \left(\mu_{I3} + \sqrt{2 + \frac{15}{2} \delta} \right) - \mu_{I2} (\mu_{I2} + 5 \delta \delta_T \delta) \right\},
\]

(17)

\[
s_2 = \frac{1}{D_i} \left\{ - (\mu_{I3} + \sqrt{2 + \frac{15}{2} \delta}) \left[\sqrt{2}(\mu_{I1} + \delta) + \frac{13}{4} \alpha \mu_{I1} + \alpha \delta \right] \\
+ \left(\sqrt{2} + \frac{13}{4} \alpha \right) \mu_{I2} (\mu_{I2} + 5 \delta \delta_T \delta) \right\},
\]

(18)

\[
s_3 = -\frac{\alpha}{D_i} \mu_{I2} \left(\sqrt{2 + \frac{15}{2} \delta} \right).
\]

(19)

The viscosity coefficients for primary ions are written as

\[
\begin{bmatrix}
\bar{\mu}_{i1} \\
\bar{\mu}_{i2} \\
\bar{\mu}_{i3}
\end{bmatrix} = \begin{bmatrix}
\mu_{I1} \\
\mu_{I2} \\
\mu_{I3}
\end{bmatrix} - \Delta_t \begin{bmatrix}
(\hat{C}_{ii}^3)_{00} \\
(\hat{C}_{ii}^3)_{01} \\
(\hat{C}_{ii}^3)_{11}
\end{bmatrix},
\]

(20)

where the conventional viscosity coefficients are given by \(\mu_{I1} = (f_i/f_c)[\sqrt{2} + \alpha - \log(1 + \sqrt{2})] \), \(\mu_{I2} = (f_i/f_c)[-2\sqrt{2} - 3\alpha/2 + (5/2)\log(1 + \sqrt{2})] \) and \(\mu_{I3} = (f_i/f_c)[(39/8)\sqrt{2} + 13\alpha/4 - (25/4)\log(1 + \sqrt{2})] \), and the matrix elements of \(\hat{C}_{ii}^3 \) are calculated as follows: \((\hat{C}_{ii}^3)_{00} = -((1087/63)\sqrt{2} + (589/21)) \log(1 + \sqrt{2}) \), \((\hat{C}_{ii}^3)_{01} = -(143/126)\sqrt{2} + (55/21)\log(1 + \sqrt{2}) \), \((\hat{C}_{ii}^3)_{11} = (50923/504)\sqrt{2} - (13625/84)\log(1 + \sqrt{2}) \). The viscosity coefficients for impurities in the plateau to Pfirsch-Schlüter regime are given by

\[
\begin{bmatrix}
\mu_{I1} \\
\mu_{I2} \\
\mu_{I3}
\end{bmatrix} = \frac{\tau_{II}}{n_i} \frac{8\pi}{3} \int_0^\infty dv \frac{v^4}{v_f^2} \nu_f^2(v) \left(\frac{f_{II}^*}{1 + f_{II}^*/f_{II}} \right) f_{I0} \left[\frac{1}{v_f^2} - \frac{5}{2} \left(\frac{v_f^2}{v_f^2} \right)^2 \right],
\]

(21)
where \(\tau_{II} = \frac{3\sqrt{\pi}}{4\nu_{II}} \),

\[
\tilde{f}_{II} = \frac{3}{5} \langle (b \cdot \nabla B)^2 \rangle \frac{v^2}{v_D^2(v) v_f^2(v)}, \quad f_{\nu}^* = \frac{3\pi^2 v}{16 \varepsilon^2} \frac{1}{R_q v_D(v)},
\]

\(v_f^2(v) = v_{II} \left\{ [\text{erf}(v/v_I) - 3G(v/v_I)](v_I/v)^3 + (8/v_I)G(v/v_I) + (8/3\sqrt{\pi})\delta \right\} \),

\(v_D^2(v) = v_{II} \times \left\{ [\text{erf}(v/v_I) - G(v/v_I)](v_I/v)^3 + (4/3\sqrt{\pi})(T_i/T_I)\delta (v_I/v)^2 \right\} \) and \(f_{\nu}^* \) is obtained for a model magnetic field with circular flux surfaces, i.e., \(B = B_0/(1 + \varepsilon \cos \theta) \). The impurity viscosity coefficients in the banana regime are obtained in the form:

\[
\begin{bmatrix}
\mu_{I1} \\
\mu_{I2} \\
\mu_{I3}
\end{bmatrix} = \begin{bmatrix}
\tilde{\mu}_{I1}(\alpha = 0) \\
\tilde{\mu}_{I2}(\alpha = 0) \\
\tilde{\mu}_{I3}(\alpha = 0)
\end{bmatrix} + \frac{f_i}{f_e} \frac{T_i}{T_I} \delta \begin{bmatrix}
2/3 \\
-2/3 \\
5/3
\end{bmatrix}.
\]

Finally we show the normalized poloidal flows of primary ions due to the thermal force \(A_2 \) in the model magnetic field with circular flux surfaces. The normalized flows \(u_{I2} \) for \(\alpha = 0, 1 \) and \(4 \) are plotted as a function of the inverse aspect ratio \(\varepsilon \) in Fig. 1. The impurity ions are assumed to be (a) in the plateau to Pfirsch-Schlüter regime and (b) in the banana regime. The normalized flows obtained by the conventional moment method are larger than those by our method by up to about 20% in the range of intermediate aspect ratio. We also plot those conventional flows by dotted curves in Fig.1.

![Figure 1: Normalized poloidal flow \(u_{I2} \) versus inverse aspect ratio \(\varepsilon \). For comparison, the flows obtained by the conventional moment method are also plotted by the dotted curves. The parameter \(\nu_{*I} \) in (a) is defined by \(\nu_{*I} = (16/3\pi)(f_i/f_e)(1 - \varepsilon^2)R_q/(\varepsilon^2v_I\tau_{II}) \).](image)

References
