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Introduction

Radially propagating filaments elongated along magnetic field lines are responsible for a

major part of particle density, momentum and energy cross-field transport in the scrape-off-

layer (SOL) in Tokamaks[1]. These filaments are widely known as blobs in L-mode operation

and ELM filaments in H-mode operation. The particle density amplitude of such structures

compared to the background density can be well above unity[1]. Furthermore, the gradient

length scale of blobs is comparable to the ion gyroradius. Blobs are born in the vicinity of the

last closed flux surface where the background plasma is denser, hotter and has steeper gradients

than in the SOL region. Furthermore, in the SOL region the ion temperature is often equal to or

higher than the electron temperature.

We present results from simulations of seeded blob convection in the scrape-off-layer of

magnetically confined fusion plasmas[2].

Model equations

We restrict ourselfs to a simple paradigmatic two-field model which describes the time evo-

lution of the electron particle density n and the ion gyrocenter density N in a simple, quasi-

neutral, isothermal, electrostatic plasma in the plane perpendicular to the magnetic field BBB at

the outboard midplane. We employ a right-handed slab geometry with orthonormal unit vectors

(x̂xx, ŷyy, ẑzz) with ẑzz aligned with the magnetic field and x̂xx anti-parallel to the magnetic field gradient.

The inverse magnetic field strength is given as 1
B = 1

B0

(
1+ x

R

)
, where R is the radial distance to

the inner edge of the plane at the outboard mid-plane.

∂n
∂ t

+
1
B
{φ ,n}+nK (φ)− Te

e
K (n) = ν∇

2
⊥n, (1a)

∂N
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+
1
B
{ψ,N}+NK (ψ)+

Ti

e
K (N) = ν∇

2
⊥N, (1b)

Γ1N +∇ ·
(

N
ΩB

∇⊥φ

)
= n, (1c)

where Te and Ti denote electron and ion temperature, respectively, ν is the collisional diffusion

coefficient, Ω = eB
mi

and ∇⊥ =−ẑzz× (ẑzz×∇). The EEE×BBB -advection terms are written in terms of
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Poisson brackets which for two arbitrary functions f and g are defined as

{ f ,g}= ∂ f
∂x

∂g
∂y
− ∂ f

∂y
∂g
∂x

. (2)

The compressibility of the perpendicular fluxes is described by the operator K = −κ
∂

∂y , with

κ = 1/(B0R).

Ion FLR effects appear in the quasi-neutrality constraint Eq. (1c) and in the generalized ion

EEE ×BBB -velocity explicitly through the Padé approximant Γ1 =
(
1− 1

2ρ2
i ∆
)−1 to the gyroaver-

aging operator, where ρi =
√

Ti
miΩ

2
0

denotes the thermal ion gyroradius with the constant ion

gyrofrequency Ω0 = eB0/mi. The FLR corrected electric potential is ψ := Γ1φ − m
2q

(
∇⊥φ

B

)2
.

Energy conservation

The energy theorem is derived multiplying the density equations by T (1+ lnN)+qψ . Inte-

gration over the whole volume and assuming boundary terms to vanish yields

d
dt

∫
D

dxxx

[
Ten lnn+TiN lnN +

1
2

miN
(

∇⊥φ

B

)2
]
= Λ (3)

where Λ represents the losses due to diffusion.

Simulation Results

We present exemplary blob simulations with and without FLR-effects in Figure (1) and

(2). The initially Gaussian shaped blob accelerates radially for both cold and warm ions. Two

side-arms with a pronounced cap develop afterwards. For warm ions the blob also accelerates

poloidally while the cold ion blob retains an up-down symmetry. In the poloidal turn the warm

ion blob becomes stretched and separates from its lobes, streaming upwards thereafter.

Figure 1: Density n (top) and vorticity ∇2
⊥φ/B0 (bottom) for Ti = 0, σ = 10ρs and ∆n = 4n0.

The first column corresponds to t = 0. Going from left to right the time increment is 500Ω
−1
0 .

The color scales remains constant. (Taken from Ref. [2])
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Figure 2: Density n (top) and vorticity ∇2
⊥φ/B0 (bottom) plot for Ti = 2Te, σ = 10ρs and ∆n =

2n0. The first column corresponds to t = 0. Going from left to right the time increment is

430Ω
−1
0 . The color scales remains constant. (Taken from Ref. [2])

Scanning the parameter range we found that the blob evolution either becomes more mush-

room like for low ion temperature and large blob widths or more compact for high ion tempera-

ture and small widths. In order to evaluate this observation of blob shapes we use the definition

of blob compactness

IC(t) :=
∫

D dxxx(n(x,y, t)−n0)h(x,y, t)∫
D dxxx(n(x,y,0)−n0)h(x,y,0)

, (4)

where h is defined as a Heaviside function

h(x,y, t) :=

1 if (x− xmax(t))2 +(y− ymax(t))2 < σ2,

0 else.

IC is a measure for the ability of the blob to retain its form and mass. A small compactness

means that the blob has lost most of its initial mass or is spread out over a large area. The

mushroom shape should e.g. have a small compactness. A high compactness means that the

blob preserves its initial particle density. The high ion temperature blobs should correspondingly

have a high compactness. In Fig. 3 we show the blob compactness at time t = 10cs

√
∆n

σR(n0+∆n)

as a function of the FLR strength, modeled by the control parameter r = ρi
σ

∆n
(n0+∆n) . r is the

ratio between the ion gyroradius and the initial gradient length scale. We identify two regimes

characterized by the FLR-strength. For high values of r the compactness constantly fluctuates

around 0.8 for all parameters investigated in this regime. For low values of r the compactness is

a factor 2−3 times smaller, showing that blob mass in this regime spreads out or diffuses away.

The transition between the two regimes happens between r = 0.06 and r = 0.08.

Furthermore, blobs with very low FLR effects show a significant variation of compactness

when amplitude is varied. The smallest values for IC in our plot can be observed for the low

amplitude ∆n = 0.1n0. When amplitude is increased blob compactness increases as well.
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Figure 3: Blob compactness IC of global blobs as a function of FLR strength at time t = 10γ
−1
global

for various amplitudes and blob widths. (Taken from Ref. [2])

Work in Progress and Outlook

The three-dimensional gyrofluid equations for density N and parallel velocity U derived from

the gyrokinetic Vlasov-Maxwell system[3] under the assumption (∇× b̂)‖ = 0 read:

∂tN +∇
(
N
(
Ub̂+vE +vC +v∇B

))
= ΛN (5a)

mN∂tU +mN
(
Ub̂+vE +vC +v∇B

)
·∇U +∇(mNUv′C)−mNU (vE +v∇B) · κ̂

=−∇‖(NT )−qN∇‖ψ +ΛU (5b)

We assume an axisymmetric magnetic field and the low-β limit via κ̂ ≡ b̂ ·∇b̂ = −∇⊥ lnB.

We employ cylindrical coordinates (R,Z,φ) and approximate the drift planes as the (R,Z)-

planes. The parallel derivative remains, however, exact as ∇‖ ≡ b̂ ·∇. We use the Lagrangian

approach introduced in Ref.[4] in combination with discontinuous Galerkin methods to evaluate

this derivative numerically. In the future we want to implement various geometries of the back-

ground magnetic field including X-point geometry. Furthermore, an implementation of sheath

boundary conditions to model SOL conditions could lead to sophisticated blob simulations.
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