Two-stage melting in a monolayer of dust particles in plasma

O.F. Petrov1,2, V.E. Fortov1,2, M.M. Vasiliev1, Y. Tun2, K.B. Stacenko1, O.S. Vaulina1,2, E.V. Vasilieva1, E.M. Lisin1 and M.I. Myasnikov1

1Joint Institute for High Temperatures RAS, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Russia

The charged dust system represent a non-neutral or quasi-neutral systems (dusty plasmas) containing micron-sized particles of a substance with electrical charges up to 10^2-10^5e. As a result of strong interaction, the dust particles may form the ordered structures of liquid and crystal types. The laboratory dusty plasma is the unique object for studying the structures, phase transitions and transport phenomena on the “kinetic level”.

The phase transitions in quasi-two-dimensional dust structures suspended in rf discharge were studied. Two-stage melting is observed experimentally in a confined monolayer of dust particles in plasma. The experimental results have revealed the existence of hexatic phase as well as solid-to-hexatic phase and hexatic-to-liquid transitions. The pair correlation and bond-angular correlation functions, the number of topological defects, the pair potentials and the excess entropy are measured and analyzed. The bond-orientational correlation functions show a clear solid-to-hexatic-to-fluid transition, in perfect agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory, and the ensemble's entropy demonstrates sharp change around transition. The spatial distribution of pair interparticle interaction forces was recovered by the original method based on solving the inverse problem using Langevin equations. The measured phase-state points with the theoretical phase diagram of two-dimensional Yukawa system have been obtained.

This work was partially supported by the Russian Foundation for Basic Research (Projects No. 13-02-01393 and 13-02-12256) and by the Program of the Presidium of RAS “Matter under High Energy Densities”.