ICRF heating scenarios in the ITER non-active phase operations

S.H. Kim1, P. Lamalle1, B. Beaumont1, A. Loarte1, A. Messiaen2

1ITER Organisation, Route de Vinon sur Verdon, 13067 St Paul Lez Durance Cedex, France
2Laboratory for Plasma Physics-ERM/KMS, partner in the Trilateal Euregio Cluster, B-1000 Brussels, Belgium

Access to H-mode conditions is one important operation milestone in the ITER non-active phase of operations allowing the characterization of plasma behaviour in H-mode at the ITER scale, the commissioning of edge localized mode (ELM) control schemes, and preparation for H-mode scenarios in the active phase with DD or DT plasmas. On the basis of present understanding, access and sustainment of H-mode plasmas in the ITER non-active operational phase will require high levels of auxiliary power even for half-current/half-field (7.5MA and 2.65T) plasmas. This requires the use of all available auxiliary heating power including ion cyclotron resonance frequency (ICRF) heating in addition to hydrogen neutral beam injection (H-NBI) and electron cyclotron (EC) wave heating. For half-current/half-field plasmas in the non-active phase operations, the potential ICRF heating schemes are second harmonic He3 minority heating in H plasmas and fundamental frequency H minority heating in He plasmas [1]. In this work, these two main ICRF heating schemes are investigated in depth using a full wave ICRF code, TORIC [2]. Multiple ion species heated by ICRF heating and H-NBI are included and a range of background plasma conditions (L-mode/H-mode profiles with varying minority ion concentration) are considered, in order to address the feasibility of the ICRF heating schemes in the ITER non-active phase operations. As expected from theory and in agreement with previous results, second harmonic He3 minority in H plasmas is found to be very ineffective with low single pass absorption while the fundamental frequency H minority heating in He plasmas is very effective with good single-pass absorption near the plasma centre. In addition, coupling of ICRF power in half-current/half-field He H-modes has been evaluated with the ANTITER II code [3] to be as effective as for 15 MA/5.3T DT H-mode plasmas with Q = 10, which is the design point of the ITER ICRF antenna. In this paper, sensitivity of single-pass absorption and ICRF power coupling to the plasmas in the foreseen ITER non-active scenarios will be documented in detail.

[1] R.V. Budny et al., 2012 Nucl. Fusion 52 023023
[3] A. Messiaen et al., 2010 Nucl. Fusion 50 025026