Experimental estimation of tearing mode stability parameters (Δ′ and wc)
using high resolution 2-D ECEI data in the KSTAR plasmas

M.J. Choi¹, G.S. Yun¹, W. Lee¹, H.K. Park², Y.-S. Park³, S.A. Sabbagh³, K.J. Gibson⁴,
C. Bowman⁴, C.W. Domier⁵, N.C. Luhmann, Jr.⁵, J.-G. Bak⁶, S.G. Lee⁶ and KSTAR Team⁶
¹ Pohang University of Science and Tehcnology, Pohang, Gyungbuk 790-784, Korea
² Ulsan National Institute of Science and Technology, Ulju-Gun, Ulsan 689-798, Korea
³ Columbia University, New York, NY 10027, USA
⁴ University of York, Heslington, York, YO10 5DD, UK
⁵ University of California at Davis, Davis, CA 95616, USA
⁶ National Fusion Research Institute, Daejeon 169-148, Korea

An accurate evaluation of the tearing mode stability parameters is important to understand
the mode evolution mechanism and develop a corresponding control logic. In recent years,
much efforts have been devoted for estimation of the nonlinear classical stability index (Δ′) and
the critical width of pressure flattening (wc) based on 1-D measurement, but the accuracy was
limited to the marginal spatial resolution of the data.

In this paper, those tearing mode parameters are estimated using high-resolution 2-D ECE images of m/n =
2/1 tearing mode. The ECE images are directly compared with synthetic images from a tearing mode Te model [1, 2]
which includes Δ′ and wc. The best matched Te model yields
\[r_s \Delta = -1.633 \pm 1.265 \]
where \(r_s \) is \(q = 2 \) rational surface radius and \(w_c = 0.612 \pm 0.0726 \) cm, which is consistent with the ideal MHD theory. Work supported by
NRF Korea under grant no. NRF-2009-0082507 and US
DoE under contract no. DE-FG-02-99ER54531.

References

Figure 1: The measured ECE images are compared with the synthetic ones at all tearing mode phases (t₁–t₄) to estimate Δ′ and wc.