We are pursuing a cross-benchmarking and validation initiative for tokamak 3D equilibrium calculations, with 11 codes participating: the linearized tokamak equilibrium codes IPEC and MARS-F, the time-dependent extended MHD codes M3D-C1, M3D, and NIMROD, the gyrokinetic code XGC, as well as the stellarator codes VMEC, NSTAB, PIES, HINT and SPEC. Dedicated experiments on the DIII-D tokamak to generate data for 3D equilibrium validation are expected this year, allowing simultaneous cross-benchmarking and validation of the codes. Initial cross-benchmarking calculations are finding a disagreement between stellarator and tokamak 3D equilibrium codes. Investigation of the source of the disagreement has led to new insights into the domain of validity of linearized 3D equilibrium codes and of the VMEC code. The initial case being studied is DIII-D shot number 142603, which was part of a campaign to study ELM suppression using externally imposed nonaxisymmetric fields. One approach to understanding the differences between the VMEC and linearized solutions has been to compare the solutions of the two codes for simple model equilibria. For a large aspect ratio plasma with a circular boundary perturbed by a single $m=2$, $n=1$ harmonic, there is a large localized current near the $q=2$ rational surface. The IPEC solution readily captures this feature, but the VMEC code requires an impractically large number of surfaces to arrive at a reasonable approximation to it, leading to a substantially altered global solution. On the other hand, it has been found that the approximation used in the linearized equilibrium codes can break down at surprisingly small perturbation amplitudes due to the overlap of the calculated perturbed flux surfaces. For the linearized equilibrium solutions for DIII-D shot 142603, roughly everything outside of the $q = 3.5$ surface satisfies the overlap condition, despite the fact that the perturbation amplitude is $\delta B/B \approx .001$ at the plasma boundary.