Gas puff modulation experiments in JET L- and H-mode plasmas

A. Salmi¹, T. Tala¹, C. Bourdelle², H. Bufferand², P. Mantica³, L. Meneses⁴, S. Mordjick⁵, P. Tamain⁶, M. Groth⁷, J. Hillesheim⁸, C. Maggi⁹, M. Maslov⁹, V. Naulin⁹, J. Juul Rasmussen⁹, G. Sips¹⁰, A. Sirinelli¹¹, M. Tsalas¹¹, H. Weisen¹², M. Wischmeier⁸ and JET-EFDA contributors*

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

¹VTT, Espoo, Finland; ²IRFM-CEA, Saint Paul lez Durance, France; ³IFP, CNR-ENEA, Milan, Italy; ⁴IST, Lisbon, Portugal; ⁵College of William & Mary, Virginia, USA; ⁶CCFE, Abingdon, UK; ⁷Aalto University, Helsinki, Finland; ⁸IPP, Garching, Germany; ⁹DTU Physics, Lyngby, Denmark; ¹⁰EFDA CSU, Culham, ¹¹DIFFER, Nieuwegein, Netherlands; ¹²CRPP, Lausanne, Switzerland.

New JET experiments utilising gas puff modulation technique [1-4] have been carried out in L- and H-mode plasmas to study particle sources and transport both in the plasma core and in the pedestal region. The electron density response to the gas puff modulation was measured at 10 kHz sampling rate using a recently upgraded multi-band reflectometry system [5] capable of measuring full radial profiles that extend well across the separatrix down to densities ~2x10¹⁷ m⁻³.

In L-mode a 3-point dimensionless collisionality scan was performed. A simple analysis valid for a source free region is consistent with the earlier experimental database studies on JET [6] where density peaking showed virtually no collisionality dependence. Gyrokinetic quasi-linear analysis by QuaLiKiz confirms the result from the scan. However, it is noted that weak collisionality dependence can be found with QuaLiKiz when using artificial parameters nulling the small, unavoidable, Te/Ti changes in the experimental scan.

The first proof-of-principle gas modulation in JET H-mode proved highly successful, showing clear modulation (1-2% in the core) in electron density. Various gas injection locations and frequencies were tested and the strongest electron density modulation for a given gas rate was obtained with an outboard midplane injection, with a modulation that is a factor of 1.5-3 larger than the one obtained with injection from the top or from the divertor. Since the SOL width is narrower at the midplane this would seem to indicate that the direct fuelling (or possibly “convection assisted direct fuelling”) could be responsible for a significant part of the total fuelling also in JET H-mode plasmas. This is quite interesting as the common understanding is that most of the fuelling is expected to be due to recycling, especially in the X-point region.

This contribution presents the recent experimental data together with modelling of particle transport and sources using ASTRA and SOLEDGE2D to clarify the possible existence of convection (inward particle pinch) at the edge of H-mode plasmas. The influence of ELMs in the analysis will be discussed.
