Effect of fuelling location on pedestal and ELMs in JET

Emilia R. Solano1,2, P. Tamain3, E. Delabie4, E. de la Luna1, P. Drewelow5, E. Lerche6, L. Frassinetti7, M. Clever8, I. Nunes9, T. Loarer3, A. Meigs5, F. Rimini5, M. Stamp5, G. Sips2, J. Svensson10, D. Frigione11 and JET EFDA Contributors*

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK, 1LNF-CIEMAT, Madrid, Spain; 2EFDA Close Support Unit, Culham, UK; 3IRFM-CEA, Sant-Paul-lez-Durance, France; 4Association EURATOM-FOM, Nieuwegein, The Netherlands; 5CCFE, Abingdon, UK; 6LPP-ERM/KMS, Brussels, Belgium; 7Euratom-VR Association, Stockholm, Sweden; 8FZJ, Jülich, Germany; 9Associação EURATOM/IST, Lisbon, Portugal; 10IPP- Greifswald, Germany; 11ENEA, Frascati, Italy.

Since the introduction of the Tungsten (W) divertor in JET we find that low fuelling with associated infrequent large ELMs can cause W sputtering and entrain W into the plasma, lowering pedestal temperatures and eventually cooling the plasma core. To avoid core W accumulation, typically large fuelling is used, producing high ELM frequencies and smaller ELMs. As seen in Carbon \cite{1}, large fuelling or low pumping have a detrimental effect on confinement: $H_{98} \sim 0.8$ has been typical in heavily fuelled 2 MA baseline plasmas.

We studied the effect of poloidal fuelling location on plasma pedestal and W screening in a database of comparable ILW plasmas with 2 MA, 2.3 T, $n_e/n_{e,Greenwald} \sim 0.65$, 12-14 MW of NBI heating. We found that if sufficient fuelling is applied to reach $f_{ELM} > 30-40$ Hz, then the plasma can recover from transient W events and a healthy steady state can be reached.

In a well pumped configuration (outer strike at divertor pump duct entrance) the fuelling required to just reach 30-40 Hz is sufficiently low that confinement is recovered: $H_{98} \sim 0.9$ for all fuelling locations. There is an effect of fuelling location: to reach that minimum f_{ELM}, higher fuelling is required from the divertor as opposed to remote locations (plasma top and/or midplane). This higher fuelling from the divertor is associated with lower pedestal temperature ($T_{e,ped}$ drops from 1 keV to 800 eV), higher pedestal density, and marginally lower confinement, and has a greater tendency to display "negative ELMs" \cite{2} in inboard D_n. This is a sign of recombination: a cold plasma cloud is present in inboard SOL and/or X-point \cite{3}. Hotter pedestals in steady plasmas with top fuelling display positive spikes of D_n after ELMs, possibly indicating a hotter X-point.

In a configuration with reduced pumping (with outer strike away from divertor pump duct) there is no apparent effect of puffing location: considerably colder pedestals and low confinement, $H_{98} \sim 0.8$ are observed, together with evidence of recombination after ELMs, even when the ELM frequencies are sufficient to control W.

\cite{1} G. Saibene et al., JNM Vol.241–243, 476–482 (1997) \cite{2} A. Loarte et al 1998 Nucl. Fusion 38 331 \cite{3} G.M. McCracken et al 1998 Nucl. Fusion 38 619

*See the Appendix of F. Romanelli et al, Proc. of 24th IAEA Fusion Energy Conference 2012, San Diego, USA