Structure and Dynamics of Colliding Plasma Jets

C. K. Li,1 D. D. Ryutov,2 S. X. Hu,3 M. J. Rosenberg,1 A. B. Zylstra,1 F. H. Séguin,1
J. A. Frenje,1 D. T. Casey,1 M. Gatu-Johnson1, M. E. Manuel,1 H. G. Rindkernecht,1
R. D. Petrasso,1 P. A. Amendt,2 H. S. Park,2 B. A. Remington,2 S. C. Wilks,2 R. Betti,3
D. H. Froula,3 J. P. Knauer,3 D. D. Meyerhofer,3 R. P. Drake,4 C. C. Kuranz,4
R. Young,4 and M. Koenig5

1Plasma Science and Fusion Center, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139 USA
2Lawrence Livermore National Laboratory, Livermore, California 94550 USA
3Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 USA
4University of Michigan, Ann Arbor, Michigan USA
5Laboratoire pour l’Utilisation des Lasers Intenses, UMR 7605, CNRS–CEA
–Université Paris VI–Ecole Polytechnique, 91128 Palaiseau Cedex, France

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions [1]. The observations are compared favorably with results from 2D hydrodynamic simulations of multi-stream plasma jets with collisional electrons and also with results from an analytic treatment of azimuthal magnetic field advection using a plausible model for velocity distribution of the effective electron flow. For collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known \(\nabla T_e \times \nabla n_e \) Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number \(R_M \approx 5 \times 10^4 \)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.